6. Exercise sheet

Felsner/Micek

Introduction to Order Theory
Winter 2020/21

Due for the exercise session: December 15, 2020
(1) Suppose that we are given a 3 -colorable graph G but we do not know a witnessing coloring. Show how to color G with $\mathcal{O}(\sqrt{n})$ colors in polynomial time.
(2) A circle order is a containment order of discs in the plane. Show that standard examples are circle orders.
(3) Construct a family of arbitrarily large triangle-free graphs with the chromatic number in $\Omega\left(n^{1 / 3}\right)$ where n is the number of vertices. Follow the description below.

Consider a finite projective plane of order q. So with $q^{2}+q+1$ points and $q^{2}+q+1$ lines. (You can browse the web for additional information on this object.) Fix an arbitrary ordering \prec on points of the plane and an arbitrary ordering \prec on lines of the plane Consider a graph G_{q} with vertices being all the point-line incidences. Two vertices $\left(p_{1}, \ell_{1}\right)$ and (p_{2}, ℓ_{2}) are adjacent in G_{q} if $p_{1} \prec p_{2}, \ell_{1} \prec \ell_{2}$ and $\left(p_{1}, \ell_{2}\right)$ is a point-line incidence (so is a vertex of G_{q}). Prove that

1. G_{q} is triangle-free;
2. if I is an independent set in G_{q} then reading I as the set of edges in the bipartite graph of point-line incidences, we have that I is acyclic.
Conclude the bound using a standard inequality $\chi \geq \frac{n}{\alpha}$ where α is the size of the largest independent set.
(4) Let P be an interval order and let D_{P} be its cover graph. Show that $\chi\left(D_{p}\right) \leq$ $c \log (h(P))$. Try to optimize c.
(5) Prove that d-dimensional posets are containment orders of simple polygons with d-corners. Can you make the polygons convex?
(6) Let P be a poset and let \mathcal{R} be a realizer. When we fix an ordering on linear extensions in \mathcal{R} we say that $\mathcal{R}=\left(L_{1}, \ldots, L_{k}\right)$ is an ordered realizer. We say that two (incomparable) elements x, y of P flip at coordinate $i(1 \leq i<k)$ if $x<y$ in L_{i} and $y<x$ in L_{i+1}. The crossing number of an ordered realizer is the maximum over all pairs of elements of P of the number of times the pair flips. The crossing number of a poset is the minimum crossing number of its realizer. Clearly, d-dimensional orders have crossing number of at most $d-1$. Show that this bound is tight. Hint: Look at subposets of Boolean lattices.
(7) Show that the class \mathcal{C} of disjointness graphs of families of grounded x-monotone curves satisfies $\chi \leq\binom{\omega+1}{2}$, i.e., it is χ-bounded. Hint: An graph G is a semicomparability graph, if it admits an ordering $<$ such that it has no 4 vertices a, b, c, d with $a<b<c<d$ and $a b, b c, c d \in E(G)$, but $a c, b d \notin E(G)$. Verify that graphs in \mathcal{C} are semi-comparability graphs and admit a partition into ω comparability graphs.
(8) Show that for every integer $k \geq 3$, every 3 -dimensional order is a containment order of regular k-gons. (It is a deep result that there is a 3 -dimensional order that is not a circle order.)
