5. Exercise sheet

Felsner/Micek

Introduction to Order Theory
 Winter 2020/21

Due for the exercise session: December 8, 2020
(1) Consider disjointness graphs of axis-aligned rectangles in the plane. Prove that $\chi=$ $\mathcal{O}(\omega \log \omega)$ for graphs in this class. Hint: divide \& conquer.
(2) Consider a graph whose vertices are axis-aligned rectangles in the plane and two vertices are adjacent iff the corresponding rectangles cross. In the Asplund-Grnbaum we have seen that this crossing graph has a transitive orientation, i.e., we have defined a crossing poset on the rectangles. What is the maximum dimension of a crossing poset?
(3) Now show that the class of intersection graphs of unit-length segments in the plane is χ-bounded. You may use without proof that the class of intersection graphs of grounded segments is χ-bounded.

A thrackle is an embedding of a graph in the plane, such that each edge is a Jordan arc and every pair of edges meet exactly once. Edges may either meet at a common endpoint, or, if they have no endpoints in common, at a point in their interiors (in that case the common point must be a crossing).
(4) Find thrackle embeddings of:
a. odd cycles;
b. even cycles of length at least 6 ;
c. trees.
(5) Show that a convex geometric graph (vertices are the corners of a convex polygon) with $n \geq 2 k+1$ vertices which has no $k+1$ pairwise crossing edges can have $k(2 n-2 k-1)$ edges. (This bound is actually tight).
(6) If R is a circular sequence with entries from a set of $n>1$ symbols such that no two adjacent entries are identical and R contains no circular subsequence of type $a b a b$, then the length of R is at most $2 n-2$. (Such a sequence is called a circular Davenport-Schinzel sequence of order 2. Davenport-Schinzel sequences are a strong combinatorial tool to bound complexities in geometric settings),
(7) Two edges of a geometric graph are parallel if they are not crossing and their convex hull is a quadrangle. Show that a geometric graph without parallel edges can have at most $2 n-2$ edges. Hint: Use the previous exercise.
(8) Show that given a family of n convex compact sets in the plane, one can always find $n^{1 / 5}$ of them which are either pairwise intersecting or pairwise disjoint. Hint: Think of segments first.

