4. Exercise sheet

Felsner/Micek

Introduction to Order Theory
 Winter 2020/21

Due for the exercise session: December 1, 2020
(1) Let $<_{0},<_{1}, \ldots,<_{t}$ be a set of linear orders of [n] such that for $x, y, z \in[n]$ there is an i such that $y, z<_{i} x$. Define $S_{x, y}=\left\{i: 1 \leq i \leq t\right.$ with $\left.x<_{i} y\right\}$ and $A_{x}=\operatorname{Max}\left\{S_{x, y}: x<_{0} y\right\}$. Show that $A_{x} \neq A_{y}$ for all $x \neq y$.
(2) Show that $\operatorname{dim}\left(s^{\prime}, t^{\prime} ; n^{\prime}\right) \leq \operatorname{dim}(s, t ; n)$ for all $s \leq s^{\prime}<t^{\prime} \leq t<n^{\prime} \leq n$.
(3) Let $s+t \leq n$ and $\lfloor t / s\rfloor+s-1 \leq k$. Show that $\operatorname{dim}(1, k ; n)>t$.

The fractional dimension of P is the minimum $t \in \mathbb{R}$ such that there is a multi-realizer \mathcal{R} of P such that $t=\max \left(\frac{|\mathcal{R}|}{|\mathcal{R}(a<b)|}:(a, b) \in \operatorname{inc}(P)\right)$. Here $\mathcal{R}(a<b)=\left\{L \in \mathcal{R}: a<_{L} b\right\}$, a multi-realizer is a multi-set realizer, and 'minimum t ' can be replaced by 'infimum of all t ' if you worry. Remark: It may be conveniant to equip \mathcal{R} with the uniform distribution, in this setting $1 / t=\min (\operatorname{Prob}(a<b):(a, b) \in \operatorname{inc}(P))$.
(4) Determine the fractional dimension of $\mathcal{B}_{n}(1, t)$, i.e., of levels 1 and t in the Boolean lattice \mathcal{B}_{n}.
(5) Determine good upper bounds for the fractional dimension of interval orders.
(6) Let $I(k, s)$ be the set of all interval orders with $k+s-1$ elements, a connected comparability graph, and exactly k maximal antichains, each of them of size s. Let $a(k, s)=|I(k, s)|$. Determine the values of $a(16,6)$ and $a(19,7)$ and $a(30,2)$.
(7) Let P be an interval order given with a representation. Show that for every linear extension L there is a marking function m such that $m(x)<m(y)$ iff $x<y$ in L.
(8) Let $N(m)$ be the minimal n such that the width of \mathcal{B}_{n} is at least m. Let P be an interval order of width w. Show that

$$
\operatorname{dim}(P) \leq N(w)
$$

(9) Let P be an interval order which has no induced $\mathbf{t}+\mathbf{1}$. Show that

$$
\operatorname{dim}(P) \leq N(t-1)+1
$$

(10) Let P be an interval order of height h. Show that

$$
\operatorname{dim}(P) \in O(\log \log (h))
$$

