Due for the exercise session: December 1, 2020

- (1) Let $<_0, <_1, \ldots, <_t$ be a set of linear orders of [n] such that for $x, y, z \in [n]$ there is an *i* such that $y, z <_i x$. Define $S_{x,y} = \{i : 1 \le i \le t \text{ with } x <_i y\}$ and $A_x = MAx\{S_{x,y} : x <_0 y\}$. Show that $A_x \ne A_y$ for all $x \ne y$.
- (2) Show that $\dim(s', t'; n') \leq \dim(s, t; n)$ for all $s \leq s' < t' \leq t < n' \leq n$.
- (3) Let $s + t \le n$ and $\lfloor t/s \rfloor + s 1 \le k$. Show that dim(1, k; n) > t.

The fractional dimension of P is the minimum $t \in \mathbb{R}$ such that there is a multi-realizer \mathcal{R} of P such that $t = \max\left(\frac{|\mathcal{R}|}{|\mathcal{R}(a < b)|} : (a, b) \in \operatorname{inc}(P)\right)$. Here $\mathcal{R}(a < b) = \{L \in \mathcal{R} : a <_L b\}$, a multi-realizer is a multi-set realizer, and 'minimum t' can be replaced by 'infimum of all t' if you worry. Remark: It may be conveniant to equip \mathcal{R} with the uniform distribution, in this setting $1/t = \min\left(\operatorname{Prob}(a < b) : (a, b) \in \operatorname{inc}(P)\right)$.

- (4) Determine the fractional dimension of $\mathcal{B}_n(1,t)$, i.e., of levels 1 and t in the Boolean lattice \mathcal{B}_n .
- (5) Determine good upper bounds for the fractional dimension of interval orders.
- (6) Let I(k, s) be the set of all interval orders with k + s 1 elements, a connected comparability graph, and exactly k maximal antichains, each of them of size s. Let a(k, s) = |I(k, s)|. Determine the values of a(16, 6) and a(19, 7) and a(30, 2).
- (7) Let P be an interval order given with a representation. Show that for every linear extension L there is a marking function m such that m(x) < m(y) iff x < y in L.
- (8) Let N(m) be the minimal n such that the width of \mathcal{B}_n is at least m. Let P be an interval order of width w. Show that

$$\dim(P) \le N(w).$$

(9) Let P be an interval order which has no induced t + 1. Show that

$$\dim(P) \le N(t-1) + 1.$$

(10) Let P be an interval order of height h. Show that

$$\dim(P) \in O(\log \log(h)).$$