3. Exercise sheet

Felsner/Micek

Introduction to Order Theory

Due for the exercise session: November 24, 2020
(1) Let $U(x)$ and $D(x)$ be the open up-set/down-set of x in P that is

$$
U(x)=\{y>x \mid y \in P\}, \quad D(x)=\{y<x \mid y \in P\} .
$$

Prove that for every interval order P, we have

$$
|\{D(x) \mid x \in P\}|=|\{U(x) \mid x \in P\}| .
$$

(2) Let C_{1}, C_{2} be totally incomparable chains of P, i.e., for all $x \in C_{1}$ and $y \in C_{2}$ we have $x \| y$ in P. Show that

$$
\operatorname{dim}(P) \leq 2+\operatorname{dim}\left(P \backslash\left(C_{1} \cup C_{2}\right)\right)
$$

(3) Let P and Q be orders that both have a global minimum $\mathbf{0}$ and a global maximum $\mathbf{1}$ (and $\mathbf{0} \neq \mathbf{1}$ in both orders). Show that

$$
\operatorname{dim}(P \times Q)=\operatorname{dim}(P)+\operatorname{dim}(Q)
$$

(4) Let D be a directed graph. An arc-coloring of D is an assignment of colors to arcs such that consecutive arcs obtain different colors. Arc chromatic number of D, denoted by $A(D)$ is the least integer k such that D has an arc-coloring with k colors. Show that

$$
A(D) \geq \log \chi(D)
$$

(5) Let n, k be integers with $n, k \geq 2$. A generalized shift graph G_{n}^{k} is the graph with the vertex set $V\left(G_{n}^{k}\right)=\binom{[n]}{k}$ an two k-tuples $\left\{x_{1}<\cdots<x_{k}\right\},\left\{y_{1}<\cdots<y_{k}\right\}$ are adjacent if $x_{2}=y_{1}, \ldots, x_{k}=y_{k-1}$ and $y_{2}=x_{1}, \ldots, y_{k}=x_{k-1}$. Show that for every fixed k the family of graphs $\left\{G_{n}^{k}\right\}_{n>1}$ has unbounded chromatic number Hint: Use the previous exercise.
(6) a. What is the minimum length of a cycle in $G_{n}^{(k)}$?
b. What is the minimum length of an odd cycle in $G_{n}^{(k)}$?
(7) The local chromatic number of a graph G is

$$
\Psi(G):=\min _{c} \max _{v \in V(G)}|\{c(u) \mid u \in N(v)\}|+1,
$$

where the minimum is taken over all proper vertex-colorings c of G.
Show that $\Psi\left(G_{n}^{(2)}\right)$ goes to infinity when n grows.

