2. Exercise sheet
 Felsner/Micek

Introduction to Order Theory
 Winter 2020/21

Due for the exercise session: November 17, 2020
(1) Prove that the following conditions are equivalent:
a. $\quad G$ is a comparability graph of a poset of dimension at most 2 ;
b. $\quad G$ is a containment graph of intervals on a line;
c. G is a permutation graph;
d. G and its complement are both comparability graphs.
(2) Let $\operatorname{dim}^{*}(P)$ be the least integer d such that the elements of G can be embedded into \mathbb{R}^{n} in such a way that for every x, y in P we have $x \leq y$ in P if and only if the point of x is less or equal the point of y in the product order on \mathbb{R}^{n}. Prove that $\operatorname{dim}(P)=\operatorname{dim}^{*}(P)$.
(3) Let $P=(X, \leq)$ be a poset. For a linear extension L of P, let $s(L)$ be a string over X with symbols aligned as elements in L. Prove that the set

$$
\{s \mid s \text { is a prefix of } s(L) \text { for some linear extension } L \text { of } P\}
$$

is an antimatroid over X.
(4) Let P be a poset and x be an element of P. Let L be a linear extension of $P-x$. Show that one can always extend L to L^{+}introducing x so that L^{+}is a linear extension of P.
(5) Let P and Q be the posets and let $\operatorname{dim}(P)=d$. Show that
a. $\quad \operatorname{dim}(P \backslash\{x\}) \in\{d-1, d\}$ for every $x \in P$,
b. $\quad \operatorname{dim}(P \backslash\{x, y\}) \in\{d-1, d\}$ for every $x \in \min (P), y \in \max (P), x \| y$,
c. $\quad \operatorname{dim}(P+Q) \leq \max (\operatorname{dim}(P), \operatorname{dim}(Q), 2)$,
d. $\quad \operatorname{dim}(P \times Q) \leq \operatorname{dim}(P)+\operatorname{dim}(Q)$.
(6) Let P be a poset and C be a chain in P. Prove that

$$
\operatorname{dim}(P) \leq \operatorname{dim}(P-C)+2
$$

(7) Let M be a subset of maximal elements of a poset P. Let width $(P \backslash M) \leq w$. Show that

$$
\operatorname{dim}(P) \leq w+1
$$

(8) How many antichains does the product $\mathbf{k} \times \mathbf{l}$ of two chains have?

Exercise (9) on the back.
(9) A poset is 3-irreducible if it has dimension 3 and after removing any element the dimension drops to 2 . There is a complete list of 3 -irreducible posets (it includes some infinite families).
Prove that the dimension of the posets below is at least 3 .
a. The crown C_{n} of order n is a poset on $2 n$ elements $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ with $x_{i}<y_{i}$ and $x_{i}<y_{i+1}$ for $i \in\{1, \ldots, n\}$ (cyclically) and no other strict comparabilities.

b. Three sporadic examples: the chevron, the spider, and one more.

c.

