Due for the exercise session: November 10, 2020

- (1) **a.** How many edges has the diagram of the Boolean lattice \mathcal{B}_n ?
 - **b.** How many edges has the comparability graph of \mathcal{B}_n ?
 - **c.** How many 3-chains does the Boolean lattice \mathcal{B}_n have?
 - **d.** How many 2-antichains does the Boolean lattice \mathcal{B}_n have?
- (2) Given a collection of orders (X, \leq_i) on a common ground-set X. Show that $(X, \bigcap_i \leq_i)$ is again a partial order.
- (3) **a.** Let G be a comparability graph, show that G contains no odd cycle of length ≥ 5 as induced subgraph.
 - **b.** Let G be a incomparability graph, show that G contains no odd cycle of length ≥ 5 as induced subgraph.
- (4) Let G be a bipartite graph, how many transitive orientations does G have?
- (5) Let G be a graph with a girth girth(G). Show that if $girth(G) > \chi(G)$, then G is a cover graph.
- (6) Let P be an order. Characterize the pairs (x, y) with the property that
 - P + (x < y) is an order,
 - P (x < y) is an order.
- (7) For each *m* construct a partial order P_m with $\binom{m+1}{2}$ elements such that if B_1, \ldots, B_k is a cover of P_m with the property that each B_i is a chain or an antichain, then $k \ge m$. (Later we will see that Greene-Kleitman Theory implies that every order with less than $\binom{m+1}{2}$ elements has such a cover with k < m.)
- (8) Show that the following two conditions are equivalent
 - P is a weak order,
 - P is (2+1)-free.
- (9) Let I be a family of n intervals on the real line. Show that either I contains $\lceil \sqrt{n} \rceil$ pairwise disjoint intervals or I contains $\lceil \sqrt{n} \rceil$ intervals sharing a common point.
- (10) Let $P = (X, \leq)$ be an order with a weighting $w : X \to \mathbb{R}_+$ on the elements. Show that there is a weighting $g : \mathcal{A} \to \mathbb{R}_+$ of the antichains of P such that $\max(w(C) : C$ chain $) = \sum_A g(A)$ and $w(x) = \sum_{A:x \in A} g(A)$ for all $x \in X$. (Note that this is a weighted version of the dual of Dilworth's Theorem)

(Note that this is a weighted version of the dual of Dilworth's Theorem.)