Coding and Counting Arrangements of Pseudolines

August 31, 2010
Conf. on D\&C Geometry
Bernoulli Center
EPFL

Stefan Felsner
Technische Universität Berlin

Pavel Valtr
Charles University, Praha

Arrangements of Lines

A (pairwise crossing) set of lines.

Arrangements of Pseudolines

A 1-crossing set of curves extending to infinity on both sides.

Our Version of Arrangements of Pseudolines

Euclidean: arrangements in \mathbb{R}^{2} and not in \mathbf{P}. simple: no multiple crossings.
marked: a special unbounded cell is the north-cell.

Our Version of Arrangements of Pseudolines

Euclidean: arrangements in \mathbb{R}^{2} and not in \mathbf{P}. simple: no multiple crossings.
marked: a special unbounded cell is the north-cell.

A 1-crossing set of x-monotone curves extending to infinity on both sides.

Isomorphism

The two arrangements are isomorphic.

Dual of an Arrangement

Dual of an Arrangement

Zonotopal Tiling

A tiling of an 2 n -gon with rhombic tiles.

Wiring Diagram

Confine the n pseudolines to n horizontal wires and add crossings as Xs. (Goodman 1980)

Counting Arrangements

B_{n} number of isomorphism classes of simple arrangements of n pseudolines. It is known that $B_{n} \approx 2^{b n^{2}}$ We are interested in the value of b.

Upper bound

- Knuth 92: $\mathrm{B}_{\mathrm{n}} \leq 3^{\binom{n}{2}} \Longrightarrow \mathrm{~b} \leq 0,7924$.
- Felsner 97: $b \leq 0,6974$.
- New: $\mathrm{b} \leq 0,6571$.

Counting Arrangements

B_{n} number of isomorphism classes of simple arrangements of n pseudolines. It is known that $B_{n} \approx 2^{b n^{2}}$ We are interested in the value of b.

Upper bound: New: $\mathrm{b} \leq 0,6571$.
Lower bound

- Goodman and Pollack $84: \mathrm{b} \geq 0,1111$.
- Knuth 92: b $\geq 0,1666$.
- New: $b \geq 0,1888$.

Cut-Paths

A curve from the north-cell to the south-cell crossing each pseudoline in a single edge.

Cut-Paths

If γ_{n} is the maximal number of cut-paths of an arrangement of n pseudolines, then

$$
B_{n} \leq \gamma_{n-1} \cdot B_{n-1} \leq \gamma_{n-1} \cdot \gamma_{n-2} \cdot \ldots \cdot \gamma_{2} \cdot \gamma_{1}
$$

Cut-Paths

If γ_{n} is the maximal number of cut-paths of an arrangement of n pseudolines, then

$$
B_{n} \leq \gamma_{n-1} \cdot B_{n-1} \leq \gamma_{n-1} \cdot \gamma_{n-2} \cdot \ldots \cdot \gamma_{2} \cdot \gamma_{1} .
$$

Task: Find good bounds on γ_{n}.

Edges of a Cut-Paths

- We distinguish left, middle, right and unique edges on a cut-paths

The Key Lemma

Lemma. [Knuth] For every pseudoline j and every cutpath p : p sees a middle of color j at most once.

Encoding Cut-Paths I

With a cutpath p we associate two combinatorial objects:

- A set $M_{p} \subset[n]$ consisting of all j such that pseudoline j is crossed by p as a middle.
- A binary vector $\beta_{p}=\left(b_{0}, b_{1}, \ldots, b_{\mathfrak{n}-1}\right)$ such that $b_{i}=1 \Longleftrightarrow p$ takes a right when crossing wire i.

Fact. The mapping $p \rightarrow\left(M_{p}, \beta_{p}\right)$ is injective.

Encoding Cut-Paths I

With a cutpath p we associate two combinatorial objects:

- A set $M_{p} \subset[n]$ consisting of all j such that pseudoline j is crossed by p as a middle.
- A binary vector $\beta_{p}=\left(b_{0}, b_{1}, \ldots, b_{n-1}\right)$ such that $b_{i}=1 \Longleftrightarrow p$ takes a right when crossing wire i.

Fact. The mapping $p \rightarrow\left(M_{p}, \beta_{p}\right)$ is injective.

$$
\gamma_{n} \leq 2^{n} 2^{n}=4^{n}
$$

Encoding Cut-Paths II

If $\left|M_{p}\right|=k$, then we only need $n-k$ entries of β_{p}.
Redefine β_{p} so that b_{i} encodes the left/right step at the i th lookup.

$$
\gamma_{n} \leq \sum_{k=0}^{n}\binom{n}{k} 2^{n-k}=2^{n}\left(1+\frac{1}{2}\right)^{n}=3^{n}
$$

Reversed Cut-Paths

We don't need an entry of β_{p} when taking a unique.

Reversed Cut-Paths

We don't need an entry of β_{p} when taking a unique.
Lemma. A middle of p is a unique of the reversed cut path.

Encoding Cut-Paths III

If $\Gamma(k, r)$ is the number of cutpaths that take k middles and r unique edges, then $\Gamma(k, r) \leq\binom{ n}{k} 2^{n-k-r}$ and by the reversal symmetry $\Gamma(k, r) \leq\binom{ n}{r} 2^{n-k-r}$.

Lemma. $\Gamma(k, r) \leq \min \left\{\binom{n}{k},\binom{n}{r}\right\} 2^{n-k-r}$.

Encoding Cut-Paths III

$$
\begin{aligned}
\gamma_{n} \leq \sum_{k, r} & \Gamma(k, r) \\
& \leq 2 \cdot \sum_{k, r} \min \left\{\binom{n}{k},\binom{n}{r}\right\} 2^{n-k-r} \\
& \left.=2^{n+1} \sum_{k=0}^{n} \begin{array}{l}
n \\
k
\end{array}\right) 2^{n-k} \sum_{r \geq k}^{n} \begin{array}{l}
2^{-r} \\
k
\end{array} 2^{-2 k} \sum_{j \geq 0} 2^{-j} \\
& =2^{n+2}\left(1+\frac{1}{4}\right)^{n}=4\left(\frac{5}{2}\right)^{n}
\end{aligned}
$$

Corollary. $\log _{2}\left(B_{n}\right) \leq 0.6609 n^{2}$ for n large.

The Last Improvement

We have a slightly improved bound on $\Gamma(k, r)$.
Definition. A k-transversal of a partition $\Pi=\left(B_{1}, \ldots, B_{h}\right)$ of $[n]$ is a k-element subset A of $[n]$ such that $\left|A \cap B_{i}\right| \leq 1$ for each $i \in\{1, \ldots, h\}$.

For $n \geq h \geq k$, let $P(n, h, k)$ be the maximum number of k-transversals a partition $\Pi=\left\{B_{1}, \ldots, B_{h}\right\}$ of $[n]$ with h blocks can have.

The Last Improvement

We have a slightly improved bound on $\Gamma(k, r)$.
Definition. A k-transversal of a partition $\Pi=\left(B_{1}, \ldots, B_{h}\right)$ of $[n]$ is a k-element subset A of $[n]$ such that $\left|A \cap B_{i}\right| \leq 1$ for each $i \in\{1, \ldots, h\}$.

For $n \geq h \geq k$, let $P(n, h, k)$ be the maximum number of k-transversals a partition $\Pi=\left\{B_{1}, \ldots, B_{h}\right\}$ of $[n]$ with h blocks can have.

We show $\Gamma(k, r) \leq 2^{n-k-r} P(n, n-r, k) \leq 2^{n-k-r}\binom{n-r}{k}\left(\frac{n}{r}\right)^{k}$.
This yields an improvement from 0.6609 to 0.6571 .

The Lower Bound

The MacMahon formula for the number of plane partitions in $\mathfrak{n} \times \mathfrak{n} \times \mathfrak{n}$, i.e., rhombic tilings of a hexagon with all sides of length n is

$$
\mathbf{P}(n)=\prod_{a=0}^{n-1} \prod_{b=0}^{n-1} \prod_{c=0}^{n-1} \frac{a+b+c+2}{a+b+c+1}
$$

The Lower Bound

The construction implies $B_{3 n} \geq \mathbf{P}(n) B_{n}{ }^{3}$.

The Lower Bound

The rest is a Maple supported computation:
$\ln \prod_{a=0}^{n-1} \prod_{b=0}^{n-1}(a+b+k+1) \approx \int_{x=0}^{n} \int_{y=0}^{n} \ln (x+y+k+1) d y d x$
yields

$$
\ln \mathbf{P}(\mathrm{n}) \approx\left(\frac{9}{2} \ln (3)-2 \ln (2)\right) \mathrm{n}^{2}
$$

and finally:
Theorem. The number B_{n} of arrangements of n pseudolines is at least $2^{0.1887 n^{2}}$.

Conclusion

There is a huge gap between 0.188 and 0.657 .

There is a huge gap between 0.188 and 0.657 .

Thank you.

