Coding and Counting Arrangements of Pseudolines

August 31, 2010 Conf. on D&C Geometry Bernoulli Center EPFL

Stefan Felsner

Technische Universität Berlin

Pavel Valtr

Charles University, Praha

Arrangements of Lines

A (pairwise crossing) set of lines.

Arrangements of Pseudolines

A 1-crossing set of curves extending to infinity on both sides.

Our Version of Arrangements of Pseudolines

Euclidean: arrangements in \mathbb{IR}^2 and not in **P**. simple: no multiple crossings. marked: a special unbounded cell is the north-cell.

Our Version of Arrangements of Pseudolines

Euclidean: arrangements in \mathbb{IR}^2 and not in **P**. simple: no multiple crossings. marked: a special unbounded cell is the north-cell.

A 1-crossing set of x-monotone curves extending to infinity on both sides.

Isomorphism

The two arrangements are isomorphic.

Dual of an Arrangement

Dual of an Arrangement

Zonotopal Tiling

A tiling of an 2n-gon with rhombic tiles.

Wiring Diagram

Confine the n pseudolines to n horizontal wires and add crossings as Xs. (Goodman 1980)

Counting Arrangements

 B_n number of isomorphism classes of simple arrangements of n pseudolines. It is known that $B_n \approx 2^{bn^2}$ We are interested in the value of b.

Upper bound

- Knuth 92: $B_n \leq 3^{\binom{n}{2}} \implies b \leq 0,7924.$
- Felsner 97: $b \le 0,6974$.
- New: $b \le 0,6571$.

Counting Arrangements

 B_n number of isomorphism classes of simple arrangements of n pseudolines. It is known that $B_n \approx 2^{bn^2}$ We are interested in the value of b.

Upper bound: New: $b \leq 0,6571$.

Lower bound

- Goodman and Pollack 84: $b \ge 0, 1111$.
- Knuth 92: $b \ge 0, 1666$.
- New: $b \ge 0, 1888$.

Cut-Paths

A curve from the north-cell to the south-cell crossing each pseudoline in a single edge.

Cut-Paths

If γ_n is the maximal number of cut-paths of an arrangement of n pseudolines, then

$$B_{n} \leq \gamma_{n-1} \cdot B_{n-1} \leq \gamma_{n-1} \cdot \gamma_{n-2} \cdot \ldots \cdot \gamma_{2} \cdot \gamma_{1}.$$

Cut-Paths

If γ_n is the maximal number of cut-paths of an arrangement of n pseudolines, then

$B_n \leq \gamma_{n-1} \cdot B_{n-1} \leq \gamma_{n-1} \cdot \gamma_{n-2} \cdot \ldots \cdot \gamma_2 \cdot \gamma_1.$

Task: Find good bounds on γ_n .

Edges of a Cut-Paths

• We distinguish left, middle, right and unique edges on a cut-paths

The Key Lemma

Lemma. [Knuth] For every pseudoline **j** and every cutpath **p**: **p** sees a middle of color **j** at most once.

Encoding Cut-Paths I

With a cutpath p we associate two combinatorial objects:

- A set M_p ⊂ [n] consisting of all j such that pseudoline
 j is crossed by p as a middle.
- A binary vector $\beta_p = (b_0, b_1, \dots, b_{n-1})$ such that $b_i = 1 \iff p$ takes a right when crossing wire i.

Fact. The mapping $p \to (M_p, \beta_p)$ is injective.

Encoding Cut-Paths I

With a cutpath p we associate two combinatorial objects:

- A set M_p ⊂ [n] consisting of all j such that pseudoline
 j is crossed by p as a middle.
- A binary vector $\beta_p = (b_0, b_1, \dots, b_{n-1})$ such that $b_i = 1 \iff p$ takes a right when crossing wire i.

Fact. The mapping $p \to (M_p, \beta_p)$ is injective.

 $\gamma_n \leq 2^n \, 2^n = 4^n.$

Encoding Cut-Paths II

If $|M_p| = k$, then we only need n - k entries of β_p .

Redefine β_p so that b_i encodes the left/right step at the *i*th lookup.

$$\gamma_n \leq \sum_{k=0}^n {n \choose k} 2^{n-k} = 2^n (1+\frac{1}{2})^n = 3^n.$$

Reversed Cut-Paths

We don't need an entry of β_p when taking a unique.

Reversed Cut-Paths

We don't need an entry of β_p when taking a unique.

Lemma. A middle of **p** is a unique of the reversed cut path.

Encoding Cut-Paths III

If $\Gamma(k, r)$ is the number of cutpaths that take k middles and r unique edges, then $\Gamma(k, r) \leq \binom{n}{k} 2^{n-k-r}$ and by the reversal symmetry $\Gamma(k, r) \leq \binom{n}{r} 2^{n-k-r}$.

Lemma. $\Gamma(k,r) \leq \min\left\{\binom{n}{k},\binom{n}{r}\right\}2^{n-k-r}$.

Encoding Cut-Paths III

$$\begin{split} \gamma_{n} &\leq \sum_{k,r} \Gamma(k,r) \leq \sum_{k,r} \min\left\{\binom{n}{k}, \binom{n}{r}\right\} 2^{n-k-r} \\ &\leq 2 \cdot 2^{n} \sum_{k=0}^{n} \binom{n}{k} 2^{-k} \sum_{r \geq k} 2^{-r} \\ &= 2^{n+1} \sum_{k=0}^{n} \binom{n}{k} 2^{-2k} \sum_{j \geq 0} 2^{-j} \\ &= 2^{n+2} \left(1 + \frac{1}{4}\right)^{n} = 4 \left(\frac{5}{2}\right)^{n} \end{split}$$

Corollary. $\log_2(B_n) \le 0.6609n^2$ for n large.

The Last Improvement

We have a slightly improved bound on $\Gamma(\mathbf{k},\mathbf{r})$.

Definition. A k-transversal of a partition $\Pi = (B_1, \ldots, B_h)$ of [n] is a k-element subset A of [n] such that $|A \cap B_i| \leq 1$ for each $i \in \{1, \ldots, h\}$.

For $n \ge h \ge k$, let P(n, h, k) be the maximum number of k-transversals a partition $\Pi = \{B_1, \ldots, B_h\}$ of [n] with h blocks can have.

The Last Improvement

We have a slightly improved bound on $\Gamma(\mathbf{k},\mathbf{r})$.

Definition. A k-transversal of a partition $\Pi = (B_1, \ldots, B_h)$ of [n] is a k-element subset A of [n] such that $|A \cap B_i| \leq 1$ for each $i \in \{1, \ldots, h\}$.

For $n \ge h \ge k$, let P(n, h, k) be the maximum number of k-transversals a partition $\Pi = \{B_1, \ldots, B_h\}$ of [n] with h blocks can have.

We show $\Gamma(k,r) \leq 2^{n-k-r}P(n,n-r,k) \leq 2^{n-k-r}\binom{n-r}{k}\left(\frac{n}{r}\right)^k$.

This yields an improvement from 0.6609 to 0.6571.

The Lower Bound

The MacMahon formula for the number of plane partitions in $n \times n \times n$, i.e., rhombic tilings of a hexagon with all sides of length n is

$$\mathbf{P}(n) = \prod_{a=0}^{n-1} \prod_{b=0}^{n-1} \prod_{c=0}^{n-1} \frac{a+b+c+2}{a+b+c+1}.$$

The Lower Bound

The construction implies $B_{3n} \ge \mathbf{P}(n) B_n^{-3}$.

The Lower Bound

The rest is a Maple supported computation:

$$\ln \prod_{a=0}^{n-1} \prod_{b=0}^{n-1} (a+b+k+1) \approx \int_{x=0}^{n} \int_{y=0}^{n} \ln(x+y+k+1) \, dy \, dx$$

yields

$$\ln \mathbf{P}(n) \approx \left(\frac{9}{2}\ln(3) - 2\ln(2)\right)n^2$$

and finally:

Theorem. The number B_n of arrangements of n pseudo-lines is at least $2^{0.1887 n^2}$.

Conclusion

There is a huge gap between 0.188 and 0.657.

There is a huge gap between 0.188 and 0.657.

THANK YOU.