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Arrangements of Lines

A (pairwise crossing) set of lines.



Arrangements of Pseudolines

A 1-crossing set of curves extending to infinity on both

sides.



Our Version of Arrangements of
Pseudolines

Euclidean: arrangements in IR2 and not in P.

simple: no multiple crossings.

marked: a special unbounded cell is the north-cell.



Our Version of Arrangements of
Pseudolines

Euclidean: arrangements in IR2 and not in P.

simple: no multiple crossings.

marked: a special unbounded cell is the north-cell.
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A 1-crossing set of x-monotone curves extending to infinity

on both sides.



Isomorphism
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The two arrangements are isomorphic.



Dual of an Arrangement
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Dual of an Arrangement
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Zonotopal Tiling

A tiling of an 2n-gon with rhombic tiles.



Wiring Diagram
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Confine the n pseudolines to n horizontal wires and add

crossings as Xs. (Goodman 1980)



Counting Arrangements

Bn number of isomorphism classes of simple arrangements

of n pseudolines. It is known that Bn ≈ 2bn
2

We are

interested in the value of b.

Upper bound

• Knuth 92: Bn ≤ 3(
n
2) =⇒ b ≤ 0, 7924.

• Felsner 97: b ≤ 0, 6974.

• New: b ≤ 0, 6571.



Counting Arrangements

Bn number of isomorphism classes of simple arrangements

of n pseudolines. It is known that Bn ≈ 2bn
2

We are

interested in the value of b.

Upper bound: New: b ≤ 0, 6571.

Lower bound

• Goodman and Pollack 84: b ≥ 0, 1111.

• Knuth 92: b ≥ 0, 1666.

• New: b ≥ 0, 1888.



Cut-Paths

A curve from the north-cell to the south-cell crossing each

pseudoline in a single edge.



Cut-Paths

If γn is the maximal number of cut-paths of an arrangement

of n pseudolines, then

Bn ≤ γn−1 · Bn−1 ≤ γn−1 · γn−2 · . . . · γ2 · γ1.



Cut-Paths

If γn is the maximal number of cut-paths of an arrangement

of n pseudolines, then

Bn ≤ γn−1 · Bn−1 ≤ γn−1 · γn−2 · . . . · γ2 · γ1.

Task: Find good bounds on γn.



Edges of a Cut-Paths

• We distinguish left, middle, right and unique edges on

a cut-paths



The Key Lemma

Lemma. [Knuth] For every pseudoline j and every

cutpath p: p sees a middle of color j at most once.

pseudoline j

w

w ′
c ′

cutpath p

c



Encoding Cut-Paths I

With a cutpath p we associate two combinatorial objects:

• A set Mp ⊂ [n] consisting of all j such that pseudoline

j is crossed by p as a middle.

• A binary vector βp = (b0, b1, . . . , bn−1) such that

bi = 1 ⇐⇒ p takes a right when crossing wire i.

Fact. The mapping p→ (Mp, βp) is injective.



Encoding Cut-Paths I

With a cutpath p we associate two combinatorial objects:

• A set Mp ⊂ [n] consisting of all j such that pseudoline

j is crossed by p as a middle.

• A binary vector βp = (b0, b1, . . . , bn−1) such that

bi = 1 ⇐⇒ p takes a right when crossing wire i.

Fact. The mapping p→ (Mp, βp) is injective.

γn ≤ 2n 2n = 4n.



Encoding Cut-Paths II

If |Mp| = k, then we only need n− k entries of βp.

Redefine βp so that bi encodes the left/right step at the ith

lookup.

γn ≤
n∑
k=0

(
n

k

)
2n−k = 2n (1+

1

2
)n = 3n.



Reversed Cut-Paths

We don’t need an entry of βp when taking a unique.



Reversed Cut-Paths

We don’t need an entry of βp when taking a unique.

Lemma. A middle of p is a unique of the reversed cut path.



Encoding Cut-Paths III

If Γ(k, r) is the number of cutpaths that take k middles

and r unique edges, then Γ(k, r) ≤
(
n
k

)
2n−k−r and by the

reversal symmetry Γ(k, r) ≤
(
n
r

)
2n−k−r.

Lemma. Γ(k, r) ≤ min
{(

n
k

)
,
(
n
r

)}
2n−k−r.



Encoding Cut-Paths III

γn ≤
∑
k,r

Γ(k, r) ≤
∑
k,r

min
{(n
k

)
,

(
n

r

)}
2n−k−r

≤ 2 · 2n
n∑
k=0

(
n

k

)
2−k
∑
r≥k

2−r

= 2n+1
n∑
k=0

(
n

k

)
2−2k
∑
j≥0

2−j

= 2n+2
(
1+

1

4

)n
= 4

(5
2

)n

Corollary. log2(Bn) ≤ 0.6609n2 for n large.



The Last Improvement

We have a slightly improved bound on Γ(k, r).

Definition. A k-transversal of a partition Π = (B1, . . . , Bh)

of [n] is a k-element subset A of [n] such that |A ∩ Bi| ≤ 1
for each i ∈ {1, . . . , h}.

For n ≥ h ≥ k, let P(n, h, k) be the maximum number of

k-transversals a partition Π = {B1, . . . , Bh} of [n] with h

blocks can have.



The Last Improvement

We have a slightly improved bound on Γ(k, r).

Definition. A k-transversal of a partition Π = (B1, . . . , Bh)

of [n] is a k-element subset A of [n] such that |A ∩ Bi| ≤ 1
for each i ∈ {1, . . . , h}.

For n ≥ h ≥ k, let P(n, h, k) be the maximum number of

k-transversals a partition Π = {B1, . . . , Bh} of [n] with h

blocks can have.

We show Γ(k, r) ≤ 2n−k−rP(n,n− r, k) ≤ 2n−k−r
(
n−r
k

)(
n
r

)k
.

This yields an improvement from 0.6609 to 0.6571.



The Lower Bound

The MacMahon formula for the number of plane partitions

in n×n×n, i.e., rhombic tilings of a hexagon with all sides

of length n is

P(n) =

n−1∏
a=0

n−1∏
b=0

n−1∏
c=0

a+ b+ c+ 2

a+ b+ c+ 1
.



The Lower Bound

}

}

}

Group 1

Group 2

Group 3

The construction implies B3n ≥ P(n) Bn
3.



The Lower Bound

The rest is a Maple supported computation:

ln

n−1∏
a=0

n−1∏
b=0

(a+ b+ k+ 1) ≈
∫n
x=0

∫n
y=0

ln(x+ y+ k+ 1) dy dx

yields

ln P(n) ≈
(9
2

ln(3) − 2 ln(2)
)
n2

and finally:

Theorem. The number Bn of arrangements of n pseudo-

lines is at least 20.1887 n
2
.



Conclusion

There is a huge gap between 0.188 and 0.657.



There is a huge gap between 0.188 and 0.657.

Thank you.


