1. Übung "Graphen und Geometrie"

SoSe 2018
Stefan Felsner
(1) Determine the crossing number of the Petersen graph.
(2) Let $Z(m, n)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$ and show that $K_{m, n}$ has a drawing with $Z(m, n)$ crossings.
(3) Let Γ be a drawing of $K_{m, n}$ and let M, N be the bipartition. Assume that there are $u, u^{\prime} \in M$ such that the graph induced by all edges incident to u and u^{\prime} has no crossing. Prove the following inequality:

$$
\operatorname{cr}(\Gamma) \geq \operatorname{cr}\left(K_{m-2, n}\right)+(m-2) \operatorname{cr}\left(K_{3, n}\right)
$$

Show that with the assumption that $\operatorname{cr}\left(K_{m-2, n}\right)=Z(m-2, n)$ and $\operatorname{cr}\left(K_{3, n}\right)=$ $Z(3, n)$ this implies that $\operatorname{cr}(\Gamma) \geq Z(m, n)$.
(4) Show that $\operatorname{cr}\left(K_{3, n}\right)=Z(3, n)$ for all n.
(5) Prove the following inequality for all $n \geq r>3$:

$$
\operatorname{cr}\left(K_{n}\right) \geq \frac{n(n-1)(n-2)(n-3)}{r(r-1)(r-2)(r-3)} \operatorname{cr}\left(K_{r}\right) .
$$

(6) Show that $\operatorname{cr}\left(K_{6}\right)=3, \operatorname{cr}\left(K_{7}\right)=9$, and $\operatorname{cr}\left(K_{8}\right)=18$.
(The middle one is the most demanding, assume it when discussing K_{8}).
(7) Let $\operatorname{ip}(G)=\mid\{\{e, f\}: e$ and f are independent edges in $G\} \mid$ and show that

$$
\operatorname{cr}(G) \leq(1 / 6) \operatorname{ip}(G)
$$

