Add some conditions.

- Find a representing rectangulation R in a square such that all rectangles intersect the diagonal. (We saw a solution)
- Find a representing rectangulation *R* such that all inner rectangles are squares.

The dissection of rectangles into squares Brooks, Smith, Stone and Tutte 1940.

Segment Contact Squarings

View the bipolar graph as electrical network with edges of resistance 1 Ohm. Consider an $s \rightarrow t$ flow in this network. The distribution of current in edges corresponds to a squaring. Based on this theory they give explicit solutions:

size(i, j) =# spanning trees T with (i, j) on the $s \to t$ path in T- # spanning trees T with (j, i) on the $s \to t$ path in T.

Segment Contact Squarings

Computing a Segment Contact Squaring

Step I: Compute a separating decomposition on Q. This yields a rectangular dissection.

Computing a Segment Contact Squaring

•
$$x_1 = x_2 + x_3$$

• $x_1 + x_3 + x_5 = x_7 + x_8$
• $x_1 + x_2 = 1$

Step II: Set up a linear system of equations: $A_S \cdot x = e_1$

• A₅ is a square matrix.

Theorem. det(A_S) \neq 0.

Computing a Segment Contact Squaring

- A_S is a bipartite adjacency matrix of a bipartite graph H.
- $det(A_S) = \sum_{\pi} sign(\pi) \prod a_{i,\pi(i)}$
- $det(A_S) = \sum_M sign(M)$, with M perfect matching of H.
- sign(M) = sign(M') for all M and M' perfect matching.
- *H* has a perfect matching.

Squarings with Segment Contacts

Step III: Flip negative faces to get the good separating decomposition and the squaring.

Squarings with Segment Contacts

Step III: Flip negative faces to get the good separating decomposition and the squaring.

Rectangular and square duals

Rectangular Duals

Rectangular duals are not unique.

They exist if the triangulation is 4-connected.

Squarings for Inner Triangulations

The squaring is unique.

O. Schramm Square Tilings with prescribed Combinatorics. 1993

A Polyhedral view on Squarings

 $P = \{x \in \mathbb{R}^{V}_{\geq 0} : \sum_{i \in \gamma} x_{i} \geq 1 \text{ for all } q_{1} \to q_{3} \text{ paths } \gamma \}$ solution vector for min($\sum_{i} x_{i}^{2} : x \in P$) yields squaring. L. Lovász Geometric Representations of Graphs, 2009, Sec. 6.3.2.

Computing Squarings with Systems of Equations

transversal structure \implies rectangular dissection.

- red rectangles = variables
- white circles = equations

The algorithm

- 1. T transversal structure on a 4-triangulation G.
- 2. Calculate the solution x_T of the equation system Ax = b.
- 3. If $x_T \ge 0$
 - Construct a square contact representation from x_T .
- 4. Else
 - T' obtained by 'reverting bad-directed cycle' in T.
 - Set T := T' and go to 2.

The program

The program

In the lecture we saw a demo.