More Representation Problems

Add some conditions.

- Find a representing rectangulation R in a square such that all rectangles intersect the diagonal.
(We saw a solution)
- Find a representing rectangulation R such that all inner rectangles are squares.

The dissection of rectangles into squares
Brooks, Smith, Stone and Tutte 1940.

Segment Contact Squarings

Squarings a la BSST

View the bipolar graph as electrical network with edges of resistance 1 Ohm. Consider an $s \rightarrow t$ flow in this network. The distribution of current in edges corresponds to a squaring. Based on this theory they give explicit solutions:

$$
\begin{aligned}
& \operatorname{size}(i, j)= \\
& \quad \text { \# spanning trees } T \text { with }(i, j) \text { on the } s \rightarrow t \text { path in } T \\
& \quad \text { \# spanning trees } T \text { with }(j, i) \text { on the } s \rightarrow t \text { path in } T .
\end{aligned}
$$

Segment Contact Squarings

Computing a Segment Contact Squaring

Step I: Compute a separating decomposition on Q.
This yields a rectangular dissection.

Computing a Segment Contact Squaring

$$
\begin{aligned}
& x_{1}=x_{2}+x_{3} \\
& \\
& x_{1}+x_{3}+x_{5}=x_{7}+x_{8} \\
& \\
& x_{1}+x_{2}=1
\end{aligned}
$$

Step II: Set up a linear system of equations: $A_{S} \cdot x=e_{1}$

- A_{S} is a square matrix.

Theorem. $\operatorname{det}\left(A_{S}\right) \neq 0$.

Computing a Segment Contact Squaring

- A_{S} is a bipartite adjacency matrix of a bipartite graph H.
- $\operatorname{det}\left(A_{S}\right)=\sum_{\pi} \operatorname{sign}(\pi) \prod a_{i, \pi(i)}$
- $\operatorname{det}\left(A_{S}\right)=\sum_{M} \operatorname{sign}(M)$, with M perfect matching of H.
- $\operatorname{sign}(M)=\operatorname{sign}\left(M^{\prime}\right)$ for all M and M^{\prime} perfect matching.
- H has a perfect matching.

Squarings with Segment Contacts

Step III: Flip negative faces to get the good separating decomposition and the squaring.

Squarings with Segment Contacts

Step III: Flip negative faces to get the good separating decomposition and the squaring.

Rectangular and square duals

Rectangular Duals

Rectangular duals are not unique.
They exist if the triangulation is 4-connected.

Squarings for Inner Triangulations

The squaring is unique.

O. Schramm Square Tilings with prescribed Combinatorics. 1993

A Polyhedral view on Squarings

$P=\left\{x \in \mathbb{R}_{\geq 0}^{V}: \sum_{i \in \gamma} x_{i} \geq 1\right.$ for all $q_{1} \rightarrow q_{3}$ paths $\left.\gamma\right\}$ solution vector for $\min \left(\sum_{i} x_{i}^{2}: x \in P\right)$ yields squaring.
L. Lovász Geometric Representations of Graphs, 2009, Sec. 6.3.2.

Computing Squarings with Systems of Equations

 transversal structure \Longrightarrow rectangular dissection.

- red rectangles $=$ variables
- white circles $=$ equations

The algorithm

1. T transversal structure on a 4-triangulation G.
2. Calculate the solution x_{T} of the equation system $A x=b$.
3. If $x_{T} \geq 0$

- Construct a square contact representation from x_{T}.

4. Else

- T^{\prime} obtained by 'reverting bad-directed cycle' in T.
- Set $T:=T^{\prime}$ and go to 2 .

The program

The program

In the lecture we saw a demo.

