Outline

Distributive Lattices and Markov Chains

Coupling from the Past Mixing time on α -orientations

A General problem: Sampling

- Ω a (large) finite set
- $\mu: \Omega \rightarrow [0,1]$ a probability distribution, e.g. uniform distr.

Problem. Sample from Ω according to μ .

i.e., $Pr(output \text{ is } \omega) = \mu(\omega)$.

There are many hard instances of the sampling problem. Relaxation: *Approximate sampling*

i.e., $Pr(\text{output is } \omega) = \widetilde{\mu}(\omega)$ for some $\widetilde{\mu} \approx \mu$.

Applications of (approximate) sampling:

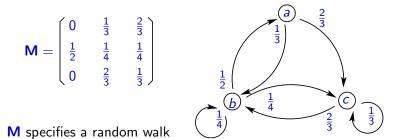
- Get hand on typical examples from Ω .
- Approximate counting.

Preliminaries on Markov Chains

M transition matrix

- format $\Omega \times \Omega$
- entries $\in [0,1]$
- row sums = 1 (stochastic)

Intuition:



Ergodic Markov Chains

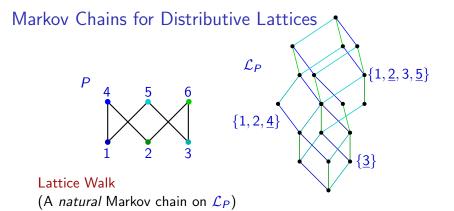
M is ergodic (i.e., irreducible and aperiodic)

- \implies multiplicity of eigenvalue 1 is one
- \implies unique π with $\pi = \pi \mathbf{M}$.

Fundamental Theorem.

 $\mathbf{M} \text{ ergoic } \implies \lim_{t \to \infty} \mu_0 \mathbf{M}^t = \pi.$

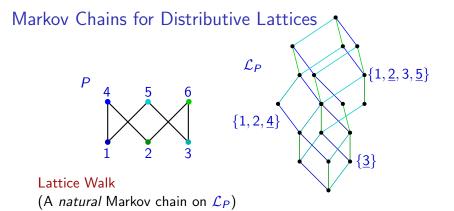
M symmetric and ergodic \implies **M**^T 1^T = **M**1^T = 1^T, hence 1**M** = 1 \implies π is the uniform distribution.



Identify state with downset D

- choose $x \in P$ & choose $s \in \{\uparrow, \downarrow\}$
- depending on s move to D + x or D x (if possible)

Fact. The chain is ergodic and symmetric, i.e, π is uniform.

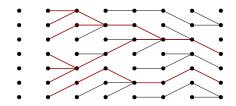


Identify state with downset D

- choose $x \in P$ & choose $s \in \{\uparrow, \downarrow\}$
- depending on s move to D + x or D x (if possible)

Fact. The chain is ergodic and symmetric, i.e, π is uniform.

Distributive Lattices and Coupling From the Past



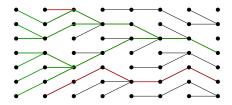
Theorem. The state returned by Coupling-FTP is exactly(!) in the stationary distribution.

The lattice walk on distributive lattices has the property:

•
$$x <_{\Omega} x' \implies f(x) <_{\Omega} f(x')$$
.

Theorem. On distributive lattices Coupling-FTP only requires the observation of two elements. observe The chain is ergodic and symmetric, i.e, π is uniform.

Distributive Lattices and Coupling From the Past



Theorem. The state returned by Coupling-FTP is exactly(!) in the stationary distribution.

The lattice walk on distributive lattices has the property:

• $x <_{\Omega} x' \implies f(x) <_{\Omega} f(x')$.

Theorem. On distributive lattices Coupling-FTP only requires the observation of two elements. observe The chain is ergodic and symmetric, i.e, π is uniform.

Mixing Time

 $\mu_x^t = \delta_x \mathbf{M}^t$ the distrib. after t steps when start is in x $\Delta(t) := \max(\|\mu_x^t - \pi\|_{VD} : x \in \Omega)$ $\tau(\varepsilon) = \min(t : \Delta(t) \le \varepsilon)$

- $\tau(\varepsilon)$ is the mixing time.
- M is rapidly mixing $\iff \tau(\varepsilon)$ is a polynomial function of $\log(\varepsilon^{-1})$ and the problem size.

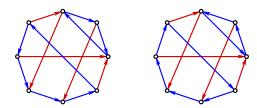
Big Challenge. Find interesting rapidly mixing Markov chains **Example.**

- Matchings (Jerrum & Sincair '88)
- Linear Extensions (Karzanov & Khachiyan '91 / Bubley & Dyer '99)
- Planar Lattice Structures, e.g. Dimer Tilings (Luby et al. '93)

Lattices of α -Orientations

Definition. Given G = (V, E) and $\alpha : V \to \mathbb{N}$. An α -orientation of G is an orientation with $outdeg(v) = \alpha(v)$ for all v.

Example.

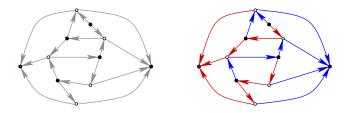


Two orientations for the same α .

Example: 2-Orientations

G a planar quadrangulation, let

α(v) = 2 for each inner vertex and α(v) = 0 for each outer vertex.



A bijection 2-orientations \leftrightarrow separating decompositions

Counting and Sampling

Counting α -orientations is #P-complete for

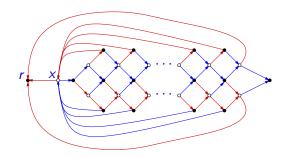
- planar maps with d(v) = 4 and $\alpha(v) \in \{1, 2, 3\}$ and
- planar maps with $d(v) \in \{3, 4, 5\}$ and $\alpha(v) = 2$.

Approximate Counting

Fact. The fully polynomial randomized approximation scheme for counting perfect matchings of bipartite graphs (Jerrum, Sinclair, and Vigoda 2001) can be used for approximate counting of α -orientations.

• What about the lattice walk?

Bad news



Theorem. Let Q_n be the quadrangulation on 5n + 1 vertices shown in the figure. The lattice walk on 2-orientations of Q_n has $\tau(1/4) > 3^{n-3}$.

- $|\Omega_c| = 1$
- $|\Omega_L| = |\Omega_R| \ge \frac{1}{2}(3^{n-1}-1).$

The lattice has "hour-glass" shape.

A Positive Result

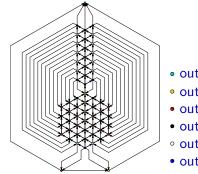
Theorem. Let Q be a plane quadrangulation with n vertices so that each inner vertex is adjacent to at most 4 edges. The mixing time of the lattice walk on 2-orientations of Q satisfies $\tau(1/4) \in O(n^8)$.

• Define a tower Markov chain.

Each step of the tower chain M_T can be simulated as a sequence of steps of the lattice walk M_2 .

- Use a coupling argument to show that M_T is rapidly mixing.
- Use a comparison argument to show that M_2 is rapidly mixing.

The End



• $\mathsf{outdeg} = 0$

- outdeg = 1
- outdeg = 2

• outdeg
$$= 3$$

- $\circ \text{ outdeg} = 4$
- outdeg = 5

Thank you.