Outline

Distributive Lattices and Markov Chains

Coupling from the Past

Mixing time on α-orientations

A General problem: Sampling

- Ω a (large) finite set
- $\mu: \Omega \rightarrow[0,1]$ a probability distribution, e.g. uniform distr.

Problem. Sample from Ω according to μ.
i.e., $\operatorname{Pr}($ output is $\omega)=\mu(\omega)$.

There are many hard instances of the sampling problem.
Relaxation: Approximate sampling
i.e., $\operatorname{Pr}($ output is $\omega)=\widetilde{\mu}(\omega)$ for some $\widetilde{\mu} \approx \mu$.

Applications of (approximate) sampling:

- Get hand on typical examples from Ω.
- Approximate counting.

Preliminaries on Markov Chains

M transition matrix

- format $\Omega \times \Omega$
- entries $\in[0,1]$
- row sums $=1$ (stochastic)

Intuition:
$\mathbf{M}=\left(\begin{array}{lll}0 & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{2}{3} & \frac{1}{3}\end{array}\right)$

M specifies a random walk

Ergodic Markov Chains

\mathbf{M} is ergodic (i.e., irreducible and aperiodic)
\Longrightarrow multiplicity of eigenvalue 1 is one
\Longrightarrow unique π with $\pi=\pi \mathrm{M}$.
Fundamental Theorem.
\mathbf{M} ergoic $\Longrightarrow \lim _{t \rightarrow \infty} \mu_{0} \mathbf{M}^{t}=\pi$.
M symmetric and ergodic
$\Longrightarrow \mathbf{M}^{T} \mathbb{1}^{T}=\mathbf{M} \mathbb{1}^{T}=\mathbb{1}^{T}$, hence $\mathbb{1} \mathbf{M}=\mathbb{1}$
$\Longrightarrow \pi$ is the uniform distribution.

Markov Chains for Distributive Lattices

Lattice Walk
(A natural Markov chain on \mathcal{L}_{P})
Identify state with downset D

- choose $x \in P$ \& choose $s \in\{\uparrow, \downarrow\}$
- depending on s move to $D+x$ or $D-x$ (if possible)

Fact. The chain is ergodic and symmetric, i.e, π is uniform.

Markov Chains for Distributive Lattices

Lattice Walk
(A natural Markov chain on \mathcal{L}_{P})
Identify state with downset D

- choose $x \in P$ \& choose $s \in\{\uparrow, \downarrow\}$
- depending on s move to $D+x$ or $D-x$ (if possible)

Fact. The chain is ergodic and symmetric, i.e, π is uniform.

Distributive Lattices and Coupling From the Past

Theorem. The state returned by Coupling-FTP is exactly(!) in the stationary distribution.

The lattice walk on distributive lattices has the property:

- $x<_{\Omega} x^{\prime} \Longrightarrow f(x)<_{\Omega} f\left(x^{\prime}\right)$.

Theorem. On distributive lattices Coupling-FTP only requires the observation of two elements. observe The chain is ergodic and symmetric, i.e, π is uniform.

Distributive Lattices and Coupling From the Past

Theorem. The state returned by Coupling-FTP is exactly(!) in the stationary distribution.

The lattice walk on distributive lattices has the property:

- $x<_{\Omega} x^{\prime} \Longrightarrow f(x)<_{\Omega} f\left(x^{\prime}\right)$.

Theorem. On distributive lattices Coupling-FTP only requires the observation of two elements. observe The chain is ergodic and symmetric, i.e, π is uniform.

Mixing Time

$\mu_{x}^{t}=\delta_{x} \mathbf{M}^{t}$ the distrib. after t steps when start is in x

$$
\begin{aligned}
& \Delta(t):=\max \left(\left\|\mu_{x}^{t}-\pi\right\|_{V D}: x \in \Omega\right) \\
& \tau(\varepsilon)=\min (t: \Delta(t) \leq \varepsilon)
\end{aligned}
$$

- $\tau(\varepsilon)$ is the mixing time.
- \mathbf{M} is rapidly mixing $\Longleftrightarrow \tau(\varepsilon)$ is a polynomial function of $\log \left(\varepsilon^{-1}\right)$ and the problem size.

Big Challenge. Find interesting rapidly mixing Markov chains Example.

- Matchings (Jerrum \& Sincair '88)
- Linear Extensions (Karzanov \& Khachiyan '91 / Bubley \& Dyer '99)
- Planar Lattice Structures, e.g. Dimer Tilings (Luby et al. '93)

Lattices of α-Orientations

Definition. Given $G=(V, E)$ and $\alpha: V \rightarrow \mathbb{N}$.
An α-orientation of G is an orientation with outdeg $(v)=\alpha(v)$ for all v.

Example.

Two orientations for the same α.

Example: 2-Orientations

G a planar quadrangulation, let

- $\alpha(v)=2$ for each inner vertex and $\alpha(v)=0$ for each outer vertex.

A bijection 2-orientations \longleftrightarrow separating decompositions

Counting and Sampling

Counting α-orientations is \#P-complete for

- planar maps with $d(v)=4$ and $\alpha(v) \in\{1,2,3\}$ and
- planar maps with $d(v) \in\{3,4,5\}$ and $\alpha(v)=2$.

Approximate Counting
Fact. The fully polynomial randomized approximation scheme for counting perfect matchings of bipartite graphs (Jerrum, Sinclair, and Vigoda 2001) can be used for approximate counting of α-orientations.

- What about the lattice walk?

Bad news

Theorem. Let Q_{n} be the quadrangulation on $5 n+1$ vertices shown in the figure. The lattice walk on 2-orientations of Q_{n} has $\tau(1 / 4)>3^{n-3}$.

- $\left|\Omega_{c}\right|=1$
- $\left|\Omega_{L}\right|=\left|\Omega_{R}\right| \geq \frac{1}{2}\left(3^{n-1}-1\right)$.

The lattice has "hour-glass" shape.

A Positive Result

Theorem. Let Q be a plane quadrangulation with n vertices so that each inner vertex is adjacent to at most 4 edges. The mixing time of the lattice walk on 2-orientations of Q satisfies $\tau(1 / 4) \in O\left(n^{8}\right)$.

- Define a tower Markov chain.

Each step of the tower chain M_{T} can be simulated as a sequence of steps of the lattice walk M_{2}.

- Use a coupling argument to show that M_{T} is rapidly mixing.
- Use a comparison argument to show that M_{2} is rapidly mixing.

The End

- outdeg $=0$
- outdeg $=1$
- outdeg $=2$
- outdeg $=3$
- outdeg $=4$
- outdeg $=5$

Thank you.

