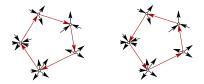
α -Orientations

Definition. Given G = (V, E) and $\alpha : V \to \mathbb{N}$. An α -orientation of G is an orientation with $outdeg(v) = \alpha(v)$ for all v.

• Reverting directed cycles preserves α -orientations.



Theorem. The set of α -orientations of a planar graph *G* has the structure of a distributive lattice.

Proof I: Essential Cycles

For the proof we assume that G is 2-connected.

Definition.

A cycle C of G is an essential cycle if

- C is chord-free and simple,
- the interior cut of C is rigid,
- there is an α -orientation X such that C is directed in X.

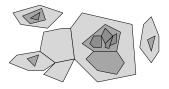
Lemma.

C is non-essential \iff C has a directed chordal path in every α -orientation.

Proof II

Lemma.

Essential cycles are interiorly disjoint or contained.



Lemma.

If C is a directed cycle of X, then X^{C} can be obtained by a sequence of reversals of essential cycles.

Lemma.

If $(C_1, ..., C_k)$ is a flip sequence $(\operatorname{ccw} \to \operatorname{cw})$ on X then for every edge *e* the essential cycles $C^{l(e)}$ and $C^{r(e)}$ alternate in the sequence.

Proof III: Flip Sequences

Lemma.

The length of any flip sequence (ccw \rightarrow cw) is bounded and there is a unique α -orientation X_{\min} with the property that all cycles in X_{\min} are cw-cycles.

• $Y \prec X$ if a flip sequence $X \rightarrow Y$ exists.

Lemma.

Let $Y \prec X$ and C be an essential cycle. Every sequence $S = (C_1, \ldots, C_k)$ of flips that transforms X into Y contains the same number of flips at C.

Proof IV: Potentials

Definition. An α -potential for *G* is a mapping

- $\wp: \mathsf{Ess}_{\alpha} \to \mathbb{N}$ such that
 - $|\wp(C) \wp(C')| \le 1$, if C and C' share an edge e.

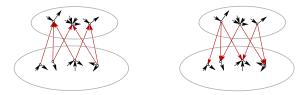
• $\wp(C^{I(e)}) \le \wp(C^{r(e)})$ for all e (orientation from X_{\min}) Lemma. There is a bijection between α -potentials and α -orientations.

Theorem. α -potentials are a distributive lattice with

- $(\wp_1 \lor \wp_2)(C) = \max\{\wp_1(C), \wp_2(C)\}$ and
- $(\wp_1 \wedge \wp_2)(C) = \min\{\wp_1(C), \wp_2(C)\}$ for all essential C.

A Dual Construction: c-Orientations

 Reorientations of directed cuts preserve flow-difference (#forward arcs – #backward arcs) along cycles.



Theorem [Propp 1993]. The set of all orientations of a graph with prescribed flow-difference for all cycles has the structure of a distributive lattice.

• Diagram edge \sim push a vertex ($\neq v_{\dagger}$).

Circulations in Planar Graphs

Theorem [Khuller, Naor and Klein 1993]. The set of all integral flows respecting capacity constraints $(\ell(e) \le f(e) \le u(e))$ of a planar graph has the structure of a distributive lattice.

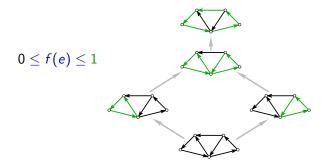


 Diagram edge ~ add or subtract a unit of flow in ccw oriented facial cycle.

Δ -Bonds

G = (V, E) a connected graph with a prescribed orientation. With $x \in \mathbb{Z}^{E}$ and C cycle we define the circular flow difference

$$\Delta_x(C) := \sum_{e \in C^+} x(e) - \sum_{e \in C^-} x(e).$$

With $\Delta \in \mathbb{Z}^{\mathcal{C}}$ and $\ell, u \in \mathbb{Z}^{\mathcal{E}}$ define

 $\mathcal{B}_{\boldsymbol{G}}(\Delta,\ell,u) = \big\{ x \in \mathbb{Z}^{\boldsymbol{E}} \ : \ \Delta_x = \Delta \text{ and } \ell \leq x \leq u \big\}.$

Δ -Bonds as Generalization

 $\mathcal{B}_{G}(\Delta, \ell, u)$ is the set of $x \in \mathbb{Z}^{E}$ such that

- $\Delta_{\times} = \Delta$ (circular flow difference)
- $\ell \leq x \leq u$ (capacity constraints).

Special cases:

- c-orientations are $\mathcal{B}_G(\Delta, 0, 1)$ $(\Delta(C) = \frac{1}{2}(|C^+| - |C^-| - c(C))).$
- Circular flows on planar G are B_{G*}(0, ℓ, u)
 (G* the dual of G).
- α-orientations.

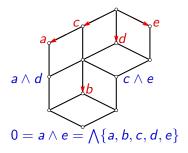
ULD Lattices

Definition. [Dilworth]

A lattice is an upper locally distributive lattice (ULD) if each element has a unique minimal representation as meet of meet-irreducibles.

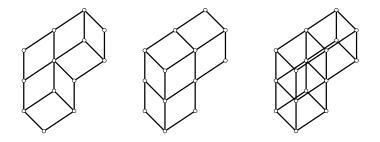
i.e., there is a unique mapping $x \to M_x$ such that

- $x = \bigwedge M_x$ (representation.)
- $x \neq \bigwedge A$ for all $A \subsetneq M_x$ (minimal).



ULD vs. Distributive

Proposition. A lattice it is ULD and LLD \iff it is distributive.



Diagrams of ULD lattices: A Characterization

A coloring of the edges of a digraph is a U-coloring iff

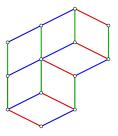
- arcs leaving a vertex have different colors.
- completion property:

Theorem.

A digraph D is acyclic, has a unique source and admits a U-coloring $\iff D$ is the diagram of an ULD lattice.

 $\, \hookrightarrow \, \mathsf{Unique} \, \mathbf{1}.$

Examples of U-colorings



- Δ-bond lattices, colors are the names of pushed vertices.
 (Connected, unique 0).
- Chip firing game with a fixed starting position (the source), colors are the names of fired vertices.

Some LLD lattices with respect to inclusion order:

- Subtrees of a tree (Boulaye '67).
- Convex subsets of posets (Birkhoff and Bennett '85).
- Convex subgraphs of acyclic digraphs (Pfaltz '71).
 (*C* is convex if with *x*, *y* all directed (*x*, *y*)-paths are in *C*).
- Convex sets of an abstract convex geometry (Edelman '80). (This is an universal family of examples).

Outline

Orders and Lattices

Definitions The Fundamental Theorem Dimension and Planarity

Lattices and Graphs

α-orientations
 Δ-Bonds and Further Examples
 The ULD-Theorem

Distributive Lattices and Markov Chains

Coupling from the Past Mixing time on α -orientations

A General problem: Sampling

- Ω a (large) finite set
- $\mu: \Omega \rightarrow [0,1]$ a probability distribution, e.g. uniform distr.

Problem. Sample from Ω according to μ .

i.e., $Pr(output \text{ is } \omega) = \mu(\omega)$.

There are many hard instances of the sampling problem. Relaxation: *Approximate sampling*

i.e., $Pr(\text{output is } \omega) = \widetilde{\mu}(\omega)$ for some $\widetilde{\mu} \approx \mu$.

Applications of (approximate) sampling:

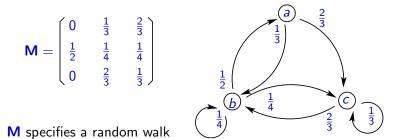
- Get hand on typical examples from Ω .
- Approximate counting.

Preliminaries on Markov Chains

M transition matrix

- format $\Omega \times \Omega$
- entries $\in [0,1]$
- row sums = 1 (stochastic)

Intuition:



Ergodic Markov Chains

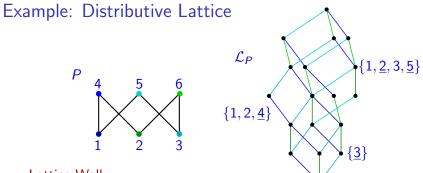
M is ergodic (i.e., irreducible and aperiodic)

- \implies multiplicity of eigenvalue 1 is one
- \implies unique π with $\pi = \pi \mathbf{M}$.

Fundamental Theorem.

 $\mathbf{M} \text{ ergoic } \implies \lim_{t \to \infty} \mu_0 \mathbf{M}^t = \pi.$

M symmetric and ergodic \implies **M**^T 1^T = **M**1^T = 1^T, hence 1**M** = 1 \implies π is the uniform distribution.



Lattice Walk (A *natural* Markov chain on \mathcal{L}_P)

Identify state with downset D

- choose $x \in P$ & choose $s \in \{\uparrow, \downarrow\}$
- depending on s move to D + x or D x (if possible)

Fact. The chain is ergodic and symmetric, i.e, π is uniform.

Mixing Time

 $\mu_x^t = \delta_x \mathbf{M}^t$ the distrib. after t steps when start is in x $\Delta(t) := \max(\|\mu_x^t - \pi\|_{VD} : x \in \Omega)$ $\tau(\varepsilon) = \min(t : \Delta(t) \le \varepsilon)$

- $\tau(\varepsilon)$ is the mixing time.
- M is rapidly mixing $\iff \tau(\varepsilon)$ is a polynomial function of $\log(\varepsilon^{-1})$ and the problem size.

Big Challenge. Find interesting rapidly mixing Markov chains **Example.**

- Matchings (Jerrum & Sincair '88)
- Linear Extensions (Karzanov & Khachiyan '91 / Bubley & Dyer '99)
- Planar Lattice Structures, e.g. Dimer Tilings (Luby et al. '93)