
α-Orientations

Definition. Given G = (V ,E ) and α : V → IN.
An α-orientation of G is an orientation with
outdeg(v) = α(v) for all v .

• Reverting directed cycles preserves α-orientations.

Theorem. The set of α-orientations of a planar graph G has the
structure of a distributive lattice.



Proof I: Essential Cycles

For the proof we assume that G is 2-connected.

Definition.
A cycle C of G is an essential cycle if

• C is chord-free and simple,

• the interior cut of C is rigid,

• there is an α-orientation X such that C is directed in X .

Lemma.
C is non-essential ⇐⇒ C has a directed chordal path in every
α-orientation.



Proof II

Lemma.
Essential cycles are interiorly disjoint or contained.

Lemma.
If C is a directed cycle of X , then XC can be obtained by a
sequence of reversals of essential cycles.

Lemma.
If (C1, ..,Ck) is a flip sequence (ccw→ cw) on X then for every
edge e the essential cycles C l(e) and C r(e) alternate in the
sequence.



Proof III: Flip Sequences

Lemma.
The length of any flip sequence (ccw→ cw) is bounded and there
is a unique α-orientation Xmin with the property that all cycles in
Xmin are cw-cycles.

• Y ≺ X if a flip sequence X → Y exists.
Lemma.
Let Y ≺ X and C be an essential cycle. Every sequence
S = (C1, . . . ,Ck) of flips that transforms X into Y contains the
same number of flips at C .



Proof IV: Potentials

Definition. An α-potential for G is a mapping
℘ : Essα → IN such that

• |℘(C )− ℘(C ′)| ≤ 1, if C and C ′ share an edge e.

• ℘(C l(e)) ≤ ℘(C r(e)) for all e (orientation from Xmin)
Lemma. There is a bijection between α-potentials and
α-orientations.
Theorem. α-potentials are a distributive lattice with

• (℘1 ∨ ℘2)(C ) = max{℘1(C ), ℘2(C )} and

• (℘1 ∧ ℘2)(C ) = min{℘1(C ), ℘2(C )} for all essential C .



A Dual Construction: c-Orientations

• Reorientations of directed cuts preserve flow-difference
(#forward arcs − #backward arcs) along cycles.

Theorem [ Propp 1993 ]. The set of all orientations of a graph
with prescribed flow-difference for all cycles has the structure of a
distributive lattice.

• Diagram edge ∼ push a vertex ( 6= v†).



Circulations in Planar Graphs

Theorem [ Khuller, Naor and Klein 1993 ].
The set of all integral flows respecting capacity constraints
(`(e) ≤ f (e) ≤ u(e)) of a planar graph has the structure of a
distributive lattice.

0 ≤ f (e) ≤ 1

• Diagram edge ∼ add or subtract a unit of flow in ccw
oriented facial cycle.



∆-Bonds

G = (V ,E ) a connected graph with a prescribed orientation.
With x ∈ ZZ E and C cycle we define the circular flow difference

∆x(C ) :=
∑
e∈C+

x(e)−
∑
e∈C−

x(e).

With ∆ ∈ ZZ C and `, u ∈ ZZ E define

BG (∆, `, u) =
{
x ∈ ZZ E : ∆x = ∆ and ` ≤ x ≤ u

}
.



∆-Bonds as Generalization

BG (∆, `, u) is the set of x ∈ ZZ E such that

• ∆x = ∆ (circular flow difference)

• ` ≤ x ≤ u (capacity constraints).

Special cases:

• c-orientations are BG (∆, 0, 1)

(∆(C ) = 1
2

(
|C+| − |C−| − c(C )

)
).

• Circular flows on planar G are BG∗(0, `, u)

(G ∗ the dual of G ).

• α-orientations.



ULD Lattices

Definition. [ Dilworth ]
A lattice is an upper locally distributive lattice (ULD) if each
element has a unique minimal representation as meet of
meet-irreducibles.

i.e., there is a unique mapping x → Mx such that

• x =
∧
Mx (representation.)

• x 6=
∧

A for all A ( Mx

(minimal).
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{a, b, c , d , e}



ULD vs. Distributive

Proposition.
A lattice it is ULD and LLD ⇐⇒ it is distributive.



Diagrams of ULD lattices: A Characterization

A coloring of the edges of a digraph is a U-coloring iff

• arcs leaving a vertex have different colors.

• completion property:

Theorem.
A digraph D is acyclic, has a unique source and admits a
U-coloring ⇐⇒ D is the diagram of an ULD lattice.

↪→ Unique 1.



Examples of U-colorings

• ∆-bond lattices, colors are the names of pushed vertices.
(Connected, unique 0).

• Chip firing game with a fixed starting position (the source),
colors are the names of fired vertices.



More Examples

Some LLD lattices with respect to inclusion order:

• Subtrees of a tree (Boulaye ’67).

• Convex subsets of posets (Birkhoff and Bennett ’85).

• Convex subgraphs of acyclic digraphs (Pfaltz ’71).

(C is convex if with x , y all directed (x , y)-paths are in C ).

• Convex sets of an abstract convex geometry (Edelman ’80).

(This is an universal family of examples ).
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A General problem: Sampling

• Ω a (large) finite set

• µ : Ω→ [0, 1] a probability distribution, e.g. uniform distr.

Problem. Sample from Ω according to µ.

i.e., Pr(output is ω) = µ(ω).

There are many hard instances of the sampling problem.
Relaxation: Approximate sampling

i.e., Pr(output is ω) = µ̃(ω) for some µ̃ ≈ µ.

Applications of (approximate) sampling:

• Get hand on typical examples from Ω.

• Approximate counting.



Preliminaries on Markov Chains

M transition matrix • format Ω× Ω

• entries ∈ [0, 1]

• row sums = 1 (stochastic)

Intuition:

2
3

1
4

1
3

2
3

1
4

1
30

1
2

0

M =

1
4

1
2

2
31

3

1
4

2
3

1
3

a

cb

M specifies a random walk



Ergodic Markov Chains

M is ergodic (i.e., irreducible and aperiodic)
=⇒ multiplicity of eigenvalue 1 is one
=⇒ unique π with π = πM.

Fundamental Theorem.
M ergoic =⇒ lim

t→∞
µ0Mt = π.

M symmetric and ergodic
=⇒ MT

1
T = M1

T = 1
T , hence 1M = 1

=⇒ π is the uniform distribution.



Example: Distributive Lattice

{3}

{1, 2, 3, 5}

{1, 2, 4}

LP
P

4 5 6

2 31

Lattice Walk
(A natural Markov chain on LP)

Identify state with downset D

• choose x ∈ P & choose s ∈ {↑, ↓}

• depending on s move to D + x or D − x (if possible)

Fact. The chain is ergodic and symmetric, i.e, π is uniform.



Mixing Time

µtx = δxMt the distrib. after t steps when start is in x

∆(t) := max(‖µtx − π‖VD : x ∈ Ω)

τ(ε) = min(t : ∆(t) ≤ ε)

• τ(ε) is the mixing time.

• M is rapidly mixing ⇐⇒ τ(ε) is a polynomial function of
log(ε−1) and the problem size.

Big Challenge. Find interesting rapidly mixing Markov chains

Example.

• Matchings (Jerrum & Sincair ’88)

• Linear Extensions (Karzanov & Khachiyan ’91 / Bubley & Dyer ’99)

• Planar Lattice Structures, e.g. Dimer Tilings (Luby et al. ’93)


