α-Orientations

Definition. Given $G=(V, E)$ and $\alpha: V \rightarrow \mathbb{N}$.
An α-orientation of G is an orientation with outdeg $(v)=\alpha(v)$ for all v.

- Reverting directed cycles preserves α-orientations.

Theorem. The set of α-orientations of a planar graph G has the structure of a distributive lattice.

Proof I: Essential Cycles

For the proof we assume that G is 2 -connected.

Definition.

A cycle C of G is an essential cycle if

- C is chord-free and simple,
- the interior cut of C is rigid,
- there is an α-orientation X such that C is directed in X.

Lemma.

C is non-essential $\Longleftrightarrow C$ has a directed chordal path in every α-orientation.

Proof II

Lemma.

Essential cycles are interiorly disjoint or contained.

Lemma.
If C is a directed cycle of X, then X^{C} can be obtained by a sequence of reversals of essential cycles.

Lemma.

If $\left(C_{1}, . ., C_{k}\right)$ is a flip sequence ($\mathrm{ccw} \rightarrow \mathrm{cw}$) on X then for every edge e the essential cycles $C^{\prime(e)}$ and $C^{r(e)}$ alternate in the sequence.

Proof III: Flip Sequences

Lemma.

The length of any flip sequence ($\mathrm{ccw} \rightarrow \mathrm{cw}$) is bounded and there is a unique α-orientation $X_{\min }$ with the property that all cycles in $X_{\text {min }}$ are cw-cycles.

- $Y \prec X$ if a flip sequence $X \rightarrow Y$ exists.

Lemma.

Let $Y \prec X$ and C be an essential cycle. Every sequence $S=\left(C_{1}, \ldots, C_{k}\right)$ of flips that transforms X into Y contains the same number of flips at C.

Proof IV: Potentials

Definition. An α-potential for G is a mapping
$\wp: \operatorname{Ess}_{\alpha} \rightarrow \mathbb{N}$ such that

- $\left|\wp(C)-\wp\left(C^{\prime}\right)\right| \leq 1$, if C and C^{\prime} share an edge e.
- $\wp\left(C^{l(e)}\right) \leq \wp\left(C^{r(e)}\right)$ for all e (orientation from $X_{\text {min }}$)

Lemma. There is a bijection between α-potentials and α-orientations.
Theorem. α-potentials are a distributive lattice with

- $\left(\wp_{1} \vee \wp_{2}\right)(C)=\max \left\{\wp_{1}(C), \wp_{2}(C)\right\}$ and
- $\left(\wp_{1} \wedge \wp_{2}\right)(C)=\min \left\{\wp_{1}(C), \wp_{2}(C)\right\}$ for all essential C.

A Dual Construction: c-Orientations

- Reorientations of directed cuts preserve flow-difference (\#forward arcs - \#backward arcs) along cycles.

Theorem [Propp 1993]. The set of all orientations of a graph with prescribed flow-difference for all cycles has the structure of a distributive lattice.

- Diagram edge \sim push a vertex $\left(\neq v_{\dagger}\right)$.

Circulations in Planar Graphs

Theorem [Khuller, Naor and Klein 1993].

The set of all integral flows respecting capacity constraints $(\ell(e) \leq f(e) \leq u(e))$ of a planar graph has the structure of a distributive lattice.

- Diagram edge \sim add or subtract a unit of flow in ccw oriented facial cycle.

Δ-Bonds

$G=(V, E)$ a connected graph with a prescribed orientation.
With $x \in \mathbb{Z}^{E}$ and C cycle we define the circular flow difference

$$
\Delta_{x}(C):=\sum_{e \in C^{+}} x(e)-\sum_{e \in C^{-}} x(e) .
$$

With $\Delta \in \mathbb{Z}^{\mathcal{C}}$ and $\ell, u \in \mathbb{Z}^{E}$ define

$$
\mathcal{B}_{G}(\Delta, \ell, u)=\left\{x \in \mathbb{Z}^{E}: \Delta_{x}=\Delta \text { and } \ell \leq x \leq u\right\} .
$$

Δ-Bonds as Generalization

$\mathcal{B}_{G}(\Delta, \ell, u)$ is the set of $x \in \mathbb{Z}^{E}$ such that

- $\Delta_{x}=\Delta$ (circular flow difference)
- $\ell \leq x \leq u$ (capacity constraints).

Special cases:

- corientations are $\mathcal{B}_{G}(\Delta, 0,1)$

$$
\left(\Delta(C)=\frac{1}{2}\left(\left|C^{+}\right|-\left|C^{-}\right|-c(C)\right)\right) .
$$

- Circular flows on planar G are $\mathcal{B}_{G^{*}}(0, \ell, u)$ (G^{*} the dual of G).
- α-orientations.

ULD Lattices

Definition. [Dilworth]

A lattice is an upper locally distributive lattice (ULD) if each element has a unique minimal representation as meet of meet-irreducibles.
i.e., there is a unique mapping $x \rightarrow M_{x}$ such that

- $x=\bigwedge M_{x}$ (representation.)
- $x \neq \bigwedge A$ for all $A \subsetneq M_{x}$ (minimal).

ULD vs. Distributive

Proposition.
A lattice it is ULD and LLD \Longleftrightarrow it is distributive.

Diagrams of ULD lattices: A Characterization

A coloring of the edges of a digraph is a U-coloring iff

- arcs leaving a vertex have different colors.
- completion property:

Theorem.
A digraph D is acyclic, has a unique source and admits a U-coloring $\Longleftrightarrow D$ is the diagram of an ULD lattice.
\hookrightarrow Unique 1.

Examples of U-colorings

- Δ-bond lattices, colors are the names of pushed vertices. (Connected, unique $\mathbf{0}$).
- Chip firing game with a fixed starting position (the source), colors are the names of fired vertices.

More Examples

Some LLD lattices with respect to inclusion order:

- Subtrees of a tree (Boulaye '67).
- Convex subsets of posets (Birkhoff and Bennett '85).
- Convex subgraphs of acyclic digraphs (Pfaltz '71). (C is convex if with x, y all directed (x, y)-paths are in C).
- Convex sets of an abstract convex geometry (Edelman '80). (This is an universal family of examples).

Outline

Orders and Lattices

Definitions
The Fundamental Theorem
Dimension and Planarity
Lattices and Graphs

α-orientations
Δ-Bonds and Further Examples
The ULD-Theorem

Distributive Lattices and Markov Chains

Coupling from the Past
Mixing time on α-orientations

A General problem: Sampling

- Ω a (large) finite set
- $\mu: \Omega \rightarrow[0,1]$ a probability distribution, e.g. uniform distr.

Problem. Sample from Ω according to μ.
i.e., $\operatorname{Pr}($ output is $\omega)=\mu(\omega)$.

There are many hard instances of the sampling problem.
Relaxation: Approximate sampling
i.e., $\operatorname{Pr}($ output is $\omega)=\widetilde{\mu}(\omega)$ for some $\widetilde{\mu} \approx \mu$.

Applications of (approximate) sampling:

- Get hand on typical examples from Ω.
- Approximate counting.

Preliminaries on Markov Chains

M transition matrix

- format $\Omega \times \Omega$
- entries $\in[0,1]$
- row sums $=1$ (stochastic)

Intuition:
$\mathbf{M}=\left(\begin{array}{lll}0 & \frac{1}{3} & \frac{2}{3} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{2}{3} & \frac{1}{3}\end{array}\right)$

M specifies a random walk

Ergodic Markov Chains

\mathbf{M} is ergodic (i.e., irreducible and aperiodic)
\Longrightarrow multiplicity of eigenvalue 1 is one
\Longrightarrow unique π with $\pi=\pi \mathrm{M}$.
Fundamental Theorem.
\mathbf{M} ergoic $\Longrightarrow \lim _{t \rightarrow \infty} \mu_{0} \mathbf{M}^{t}=\pi$.
M symmetric and ergodic
$\Longrightarrow \mathbf{M}^{T} \mathbb{1}^{T}=\mathbf{M} \mathbb{1}^{T}=\mathbb{1}^{T}$, hence $\mathbb{1} \mathbf{M}=\mathbb{1}$
$\Longrightarrow \pi$ is the uniform distribution.

Example: Distributive Lattice

Lattice Walk
(A natural Markov chain on \mathcal{L}_{P})
Identify state with downset D

- choose $x \in P$ \& choose $s \in\{\uparrow, \downarrow\}$
- depending on s move to $D+x$ or $D-x$ (if possible)

Fact. The chain is ergodic and symmetric, i.e, π is uniform.

Mixing Time

$\mu_{x}^{t}=\delta_{x} \mathbf{M}^{t}$ the distrib. after t steps when start is in x

$$
\begin{aligned}
& \Delta(t):=\max \left(\left\|\mu_{x}^{t}-\pi\right\|_{V D}: x \in \Omega\right) \\
& \tau(\varepsilon)=\min (t: \Delta(t) \leq \varepsilon)
\end{aligned}
$$

- $\tau(\varepsilon)$ is the mixing time.
- \mathbf{M} is rapidly mixing $\Longleftrightarrow \tau(\varepsilon)$ is a polynomial function of $\log \left(\varepsilon^{-1}\right)$ and the problem size.

Big Challenge. Find interesting rapidly mixing Markov chains Example.

- Matchings (Jerrum \& Sincair '88)
- Linear Extensions (Karzanov \& Khachiyan '91 / Bubley \& Dyer '99)
- Planar Lattice Structures, e.g. Dimer Tilings (Luby et al. '93)

