Linear Extensions

A linear extension of P = (X, <) is a linear order L, such that

o X<py = X<LYy
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Dimension of Orders |

A family L of linear extensions is a realizer for P = (X, <)
provided that

« for every incomparable pair (x,y) there is an L € £ such that

x <yin L.

The dimension, dim(P), of P is the minimum t, such that there is
a realizer L = {Ly,Lp...,L:} for P of size t.




Dimension of Orders Il

The dimension of an order P = (X, <) is the least t, such that P
is isomorphic to a suborder of R" with the product ordering.




Dilworth's Imbedding Theorem (1950)

Lp
P
Theorem. dim(Lp) = width(P).
o Let (3,...,C, be a chain partition of P.
Imbed Lp in R by I — (|[INGil,...,[I N Cyl).

e If P contains an antichain A of size w,
then there is a Boolean lattice B, in Lp.

Hence dim(Lp) > dim(B,) = w.




Small Dimension

e Dimension 2: Containment orders of intervals.
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e Dimension 3: Containment orders of triangles.
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Critical Pairs

Definition. An incomparable pair (x, y) is critical if

e a< ximpliesa<y.

e y < b implies x < b.




Critical Pairs

Proposition. A family R of linear extensions of P is a realizer of P
<= TR reverses all critical pairs.



Standard Examples

e Standard example of an n dimensional order:

1 2 3 4 (n—1)n

n—1 n




Dimension and Planarity

Theorem | ]- The dimension of an order P
If an order P has 0 and 1 with a planar diagram can be
and a planar diagram, then unbounded (Kelly 1981).
dim(P) < 2. 5/

Theorem |

]- If an order P
has 0 and a planar diagram,
then dim(P) < 3.




Dimension beyond Planarity

Theorem | ]- The dimension of an
order P of height < 2 with a planar diagram is at most 4.

Theorem | ]- There is a function f such
that dim(P) < f(h) for orders of height < h with a planar cover
graph.

Theorem | ]. Thereis a
function f¢ such that dim(P) < fz(h) for orders of height < h
whose cover graphs belong to a class C of graphs with bounded
expansion. (This includes classes with a forbidden minor.)



Complexity

Theorem | ]- To test if a partial order has
dimension < k is NP-complete for all kK > 3.

To test if a partial order of height 2 has dimension < k is
NP-complete for all k > 4.

Theorem [ ]. To test if a partial
order of height 2 has dimension 3 is NP-complete.

Theorem [ ]. Unless NP = ZPP there is
no polynomial algorithm to approximate the dimension of a partial
order with a factor of O(n'~¢) for any € > 0



Incidence Orders and Dimension
The incidence order Pg of G
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Theorem |

dim(Kj,) = dim(B,[1,2]) = loglog n + (5 + o(1)) log log Iog(n)
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A Planarity Criterion

Theorem | ]-
A Graph G is planar <= dim(Pg) < 3.

e dim(G) <3 = G planar.
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Dimension of Polytopes

Let Fp be the face lattice of polytope P.




Dimension of Polytopes: Lower Bound

Theorem [ Feuter 1000 ],
If P is a d-polytope, then dim(Fp) > d + 1.




Dimension of 3-Polytopes

Theorem | ]-
If G is a plane triangulation with a face F, then

o dim(Pver(G\F)=3 o dim(Pyer(G)) =4

Theorem | ]-
If G is a 3-connected plane graph with a face F, then

o dim(Pyer(G\F)=3 o dim(Pver(G)) =4



Dimension and Planar Graphs

Theorem | ]-
A Graph G is planar <= dim(Pg) < 3.

Theorem | ]-
If G is a plane multi-graph with loops, then

dim(Pver(G)) < 4.
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a-Orientations

Definition. Given G = (V,E) and o : V — N.
An a-orientation of G is an orientation with
outdeg(v) = a(v) for all v.

e Reverting directed cycles preserves a-orientations.
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Theorem. The set of a-orientations of a planar graph G has the
structure of a distributive lattice.

e Diagram edge ~ revert a directed essential /facial cycle.



Example 1: Spanning Trees

Spanning trees are in bijection with a1 orientations of a rooted
primal-dual completion G of G

e a7(v) =1 for a non-root vertex v and a7(ve) = 3 for an
edge-vertex ve and ar(v,) =0 and at(v;) = 0.
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Lattice of Spanning Trees
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Example2: Matchings and f-Factors

Let G be planar and bipartite with parts (U, W). There is bijection
between f-factors of G and «af orientations:

e Define af such that indeg(u) = f(u) for all v € U and
outdeg(w) = f(w) for all w € W.

Example. A matching and the corresponding orientation.



Example 3: Eulerian Orientations

e Orientations with outdeg(v) = indeg(v) for all v,
e a(v) =52




