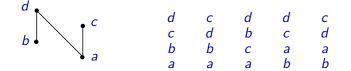
#### Linear Extensions

A linear extension of P = (X, <) is a linear order L, such that

•  $x <_P y \implies x <_L y$ 



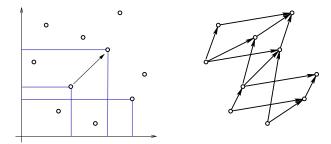
A family  $\mathcal{L}$  of linear extensions is a realizer for P = (X, <) provided that

\* for every incomparable pair (x, y) there is an  $L \in \mathcal{L}$  such that x < y in L.

The dimension, dim(P), of P is the minimum t, such that there is a realizer  $\mathcal{L} = \{L_1, L_2, \dots, L_t\}$  for P of size t.

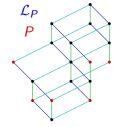
## Dimension of Orders II

The dimension of an order P = (X, <) is the least *t*, such that *P* is isomorphic to a suborder of  $\mathbb{R}^t$  with the product ordering.



Dilworth's Imbedding Theorem (1950)

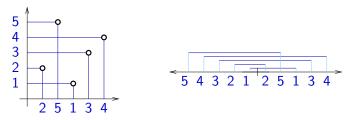
**Theorem.** dim $(\mathcal{L}_P)$  = width(P).



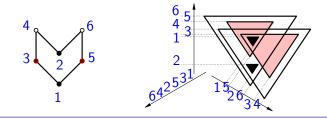
- Let C<sub>1</sub>,..., C<sub>w</sub> be a chain partition of P.
  Imbed L<sub>P</sub> in ℝ<sup>w</sup> by I → (|I ∩ C<sub>1</sub>|,..., |I ∩ C<sub>w</sub>|).
- If P contains an antichain A of size w, then there is a Boolean lattice B<sub>w</sub> in L<sub>P</sub>. Hence dim(L<sub>P</sub>) ≥ dim(B<sub>w</sub>) = w.

# **Small Dimension**

• Dimension 2: Containment orders of intervals.



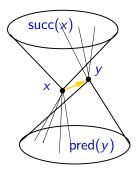
• Dimension 3: Containment orders of triangles.



## **Critical Pairs**

**Definition.** An incomparable pair (x, y) is critical if

- a < x implies a < y.
- y < b implies x < b.



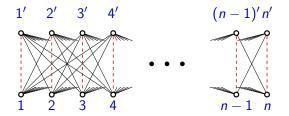
### **Critical Pairs**



**Proposition.** A family  $\mathcal{R}$  of linear extensions of P is a realizer of  $P \iff \mathcal{R}$  reverses all critical pairs.

### Standard Examples

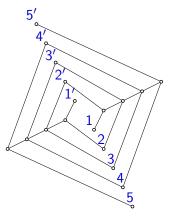
• Standard example of an *n* dimensional order:



#### Dimension and Planarity

**Theorem** [Baker 1971]. If an order *P* has **0** and **1** and a planar diagram, then  $dim(P) \le 2$ .

**Theorem** [ and Trotter and Moore 1977 ]. If an order *P* has **0** and a planar diagram, then dim(*P*)  $\leq$  3. The dimension of an order P with a planar diagram can be unbounded (Kelly 1981).



#### Dimension beyond Planarity

**Theorem** [F., Li, and Trotter 2010]. The dimension of an order P of height  $\leq 2$  with a planar diagram is at most 4.

**Theorem** [Streib and Trotter 2014]. There is a function f such that  $\dim(P) \leq f(h)$  for orders of height  $\leq h$  with a planar cover graph.

**Theorem** [Joret, Micek, and Wiechert 2018]. There is a function  $f_{\mathcal{C}}$  such that  $\dim(P) \leq f_{\mathcal{C}}(h)$  for orders of height  $\leq h$  whose cover graphs belong to a class  $\mathcal{C}$  of graphs with bounded expansion. (This includes classes with a forbidden minor.)

### Complexity

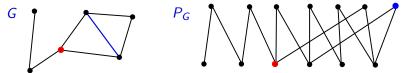
**Theorem [**Yannakakis 1982 ]. To test if a partial order has dimension  $\leq k$  is NP-complete for all  $k \geq 3$ . To test if a partial order of height 2 has dimension  $\leq k$  is NP-complete for all  $k \geq 4$ .

**Theorem** [F., Mustață, and Pergel 2014]. To test if a partial order of height 2 has dimension 3 is NP-complete.

**Theorem** [Chalermsook et al. 2013]. Unless NP = ZPP there is no polynomial algorithm to approximate the dimension of a partial order with a factor of  $O(n^{1-\varepsilon})$  for any  $\varepsilon > 0$ 

#### Incidence Orders and Dimension

The incidence order  $P_G$  of G



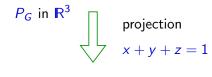
**Theorem [**Spencer '72 / Trotter '80 / Hosten und Morris '98 ].  $\dim(\mathcal{K}_n) = \dim(\mathbf{B}_n[1,2]) = \log \log n + (\frac{1}{2} + o(1)) \log \log \log(n)$ 

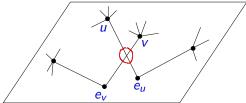
| $\dim(K_n) \leq$ | 2 | 3 | 4  | 5  | 6    | 7       | 8            |
|------------------|---|---|----|----|------|---------|--------------|
| $n \leq 1$       | 2 | 4 | 12 | 81 | 2646 | 1422564 | 229809982112 |

### A Planarity Criterion

**Theorem [**Schnyder 1989 ]. A Graph *G* is planar  $\iff \dim(P_G) \le 3$ .

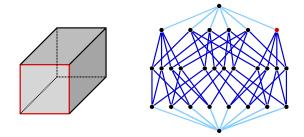
•  $\dim(G) \leq 3 \implies G$  planar.





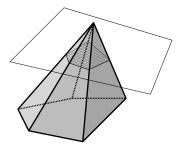
**Dimension of Polytopes** 

Let  $\mathcal{F}_P$  be the face lattice of polytope P.

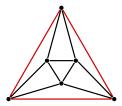


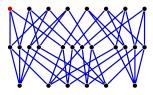
Dimension of Polytopes: Lower Bound

**Theorem [**Reuter 1990 ]. If *P* is a *d*-polytope, then  $\dim(\mathcal{F}_P) \ge d + 1$ .



## Dimension of 3-Polytopes





**Theorem [**Schnyder 1989 ]. If G is a plane triangulation with a face F, then

•  $\dim(P_{VEF}(G \setminus F)) = 3$  •  $\dim(P_{VEF}(G)) = 4$ 

**Theorem** [Brightwell+Trotter 1993]. If G is a 3-connected plane graph with a face F, then

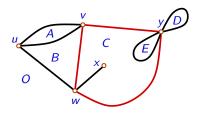
•  $\dim(P_{VEF}(G \setminus F)) = 3$  •  $\dim(P_{VEF}(G)) = 4$ 

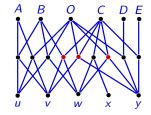
### Dimension and Planar Graphs

**Theorem [**Schnyder 1989 ]. A Graph *G* is planar  $\iff \dim(P_G) \le 3$ .

**Theorem** [Brightwell+Trotter 1997]. If G is a plane multi-graph with loops, then

#### $\dim(P_{VEF}(G)) \leq 4.$





### Outline

## Orders and Lattices

Definitions The Fundamental Theorem Dimension and Planarity

# Lattices and Graphs

α-orientations
 Δ-Bonds and Further Examples
 The ULD-Theorem

### Distributive Lattices and Markov Chains

Coupling from the Past Mixing time on  $\alpha$ -orientations

### $\alpha$ -Orientations

**Definition.** Given G = (V, E) and  $\alpha : V \to \mathbb{N}$ . An  $\alpha$ -orientation of G is an orientation with  $outdeg(v) = \alpha(v)$  for all v.

• Reverting directed cycles preserves  $\alpha$ -orientations.



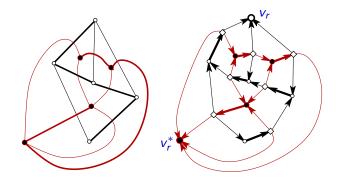
**Theorem.** The set of  $\alpha$ -orientations of a planar graph *G* has the structure of a distributive lattice.

• Diagram edge  $\sim$  revert a directed essential/facial cycle.

#### Example 1: Spanning Trees

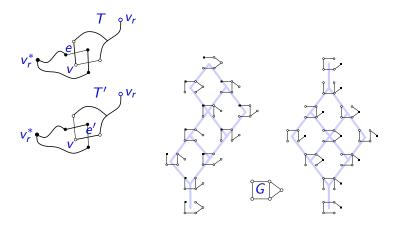
Spanning trees are in bijection with  $\alpha_T$  orientations of a rooted primal-dual completion  $\widetilde{G}$  of G

•  $\alpha_T(v) = 1$  for a non-root vertex v and  $\alpha_T(v_e) = 3$  for an edge-vertex  $v_e$  and  $\alpha_T(v_r) = 0$  and  $\alpha_T(v_r^*) = 0$ .



# Lattice of Spanning Trees

Gilmer and Litheland 1986, Propp 1993

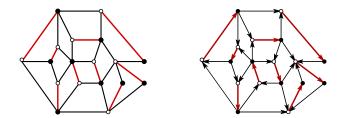


### Example2: Matchings and f-Factors

Let G be planar and bipartite with parts (U, W). There is bijection between f-factors of G and  $\alpha_f$  orientations:

Define α<sub>f</sub> such that indeg(u) = f(u) for all u ∈ U and outdeg(w) = f(w) for all w ∈ W.

**Example.** A matching and the corresponding orientation.



### **Example 3: Eulerian Orientations**

Orientations with outdeg(v) = indeg(v) for all v,
 i.e. α(v) = d(v)/2

