
Linear Extensions

A linear extension of P = (X , <) is a linear order L, such that

• x <P y =⇒ x <L y
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Dimension of Orders I

A family L of linear extensions is a realizer for P = (X , <)
provided that

∗ for every incomparable pair (x , y) there is an L ∈ L such that
x < y in L.

The dimension, dim(P), of P is the minimum t, such that there is
a realizer L = {L1, L2 . . . , Lt} for P of size t.



Dimension of Orders II

The dimension of an order P = (X , <) is the least t, such that P
is isomorphic to a suborder of IRt with the product ordering.



Dilworth’s Imbedding Theorem (1950)

Theorem. dim(LP) = width(P).

LP
P

• Let C1, . . . ,Cw be a chain partition of P.

Imbed LP in IRw by I → (|I ∩ C1|, . . . , |I ∩ Cw |).

• If P contains an antichain A of size w ,

then there is a Boolean lattice Bw in LP .

Hence dim(LP) ≥ dim(Bw ) = w .



Small Dimension

• Dimension 2: Containment orders of intervals.
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• Dimension 3: Containment orders of triangles.
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Critical Pairs

Definition. An incomparable pair (x , y) is critical if

• a < x implies a < y .

• y < b implies x < b.
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Critical Pairs

Proposition. A family R of linear extensions of P is a realizer of P
⇐⇒ R reverses all critical pairs.



Standard Examples

• Standard example of an n dimensional order:

1′ 2′ 3′ 4′ (n − 1)′n′

nn − 14321



Dimension and Planarity

Theorem [ Baker 1971 ].
If an order P has 0 and 1
and a planar diagram, then
dim(P) ≤ 2.

Theorem [ and Trotter and
Moore 1977 ]. If an order P
has 0 and a planar diagram,
then dim(P) ≤ 3.

The dimension of an order P
with a planar diagram can be
unbounded (Kelly 1981).
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Dimension beyond Planarity

Theorem [ F., Li, and Trotter 2010 ]. The dimension of an
order P of height ≤ 2 with a planar diagram is at most 4.

Theorem [ Streib and Trotter 2014 ]. There is a function f such
that dim(P) ≤ f (h) for orders of height ≤ h with a planar cover
graph.

Theorem [ Joret, Micek, and Wiechert 2018 ]. There is a
function fC such that dim(P) ≤ fC(h) for orders of height ≤ h
whose cover graphs belong to a class C of graphs with bounded
expansion. (This includes classes with a forbidden minor.)



Complexity

Theorem [ Yannakakis 1982 ]. To test if a partial order has
dimension ≤ k is NP-complete for all k ≥ 3.
To test if a partial order of height 2 has dimension ≤ k is
NP-complete for all k ≥ 4.

Theorem [ F., Mustaţă, and Pergel 2014 ]. To test if a partial
order of height 2 has dimension 3 is NP-complete.

Theorem [ Chalermsook et al. 2013 ]. Unless NP = ZPP there is
no polynomial algorithm to approximate the dimension of a partial
order with a factor of O(n1−ε) for any ε > 0



Incidence Orders and Dimension

The incidence order PG of G

PGG

Theorem [ Spencer ’72 / Trotter ’80 / Hoşten und Morris ’98 ].

dim(Kn) = dim(Bn[1, 2]) = log log n + (12 + o(1)) log log log(n)

dim(Kn) ≤ 2 3 4 5 6 7 8

n ≤ 2 4 12 81 2646 1422564 229809982112



A Planarity Criterion

Theorem [ Schnyder 1989 ].
A Graph G is planar ⇐⇒ dim(PG ) ≤ 3.

• dim(G ) ≤ 3 =⇒ G planar.
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Dimension of Polytopes

Let FP be the face lattice of polytope P.



Dimension of Polytopes: Lower Bound

Theorem [ Reuter 1990 ].
If P is a d-polytope, then dim(FP) ≥ d + 1.



Dimension of 3-Polytopes

Theorem [ Schnyder 1989 ].
If G is a plane triangulation with a face F , then

• dim(PVEF (G \ F )) = 3 • dim(PVEF (G )) = 4

Theorem [ Brightwell+Trotter 1993 ].
If G is a 3-connected plane graph with a face F , then

• dim(PVEF (G \ F )) = 3 • dim(PVEF (G )) = 4



Dimension and Planar Graphs

Theorem [ Schnyder 1989 ].
A Graph G is planar ⇐⇒ dim(PG ) ≤ 3.

Theorem [ Brightwell+Trotter 1997 ].
If G is a plane multi-graph with loops, then

dim(PVEF (G )) ≤ 4.
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α-Orientations

Definition. Given G = (V ,E ) and α : V → IN.
An α-orientation of G is an orientation with
outdeg(v) = α(v) for all v .

• Reverting directed cycles preserves α-orientations.

Theorem. The set of α-orientations of a planar graph G has the
structure of a distributive lattice.

• Diagram edge ∼ revert a directed essential/facial cycle.



Example 1: Spanning Trees

Spanning trees are in bijection with αT orientations of a rooted
primal-dual completion G̃ of G

• αT (v) = 1 for a non-root vertex v and αT (ve) = 3 for an
edge-vertex ve and αT (vr ) = 0 and αT (v∗r ) = 0.
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Lattice of Spanning Trees

Gilmer and Litheland 1986, Propp 1993
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Example2: Matchings and f-Factors

Let G be planar and bipartite with parts (U,W ). There is bijection
between f -factors of G and αf orientations:

• Define αf such that indeg(u) = f (u) for all u ∈ U and
outdeg(w) = f (w) for all w ∈W .

Example. A matching and the corresponding orientation.



Example 3: Eulerian Orientations

• Orientations with outdeg(v) = indeg(v) for all v ,

i.e. α(v) = d(v)
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