Order and lattices from graphs

Spring School SGT 2018 Seté, June 11-15, 2018

Stefan Felsner Technische Universität Berlin

Outline

Orders and Lattices

Definitions The Fundamental Theorem Dimension and Planarity

Lattices and Graphs

 $\begin{array}{c} \alpha \text{-orientations} \\ \text{The ULD-Theorem} \\ \textbf{\Delta}\text{-Bonds and Further Examples} \end{array}$

Distributive Lattices and Markov Chains

Coupling from the Past Mixing time on α -orientations

Finite Orders

- P = (X, <) is an order iff
 - X finite set
 - < transitive and irreflexive relation on X.

Lattices

- P = (X, <) an order.
 - Let $x \lor y$ be the least upper bound of x and y if it exists.
 - Let $x \wedge y$ be the greatest lower bound of x and y if it exists.
- L = (X, <) is a finite lattice iff
 - *L* is a finite order
 - $x \lor y$ and $x \land y$ exist for all x and y.

Lattices - the algebraic view

 $L = (X, \lor, \land)$ is a finite lattice iff

- X is finite and for all $a, b, c \in X$ and $\diamond \in \{\lor, \land\}$
- $a \diamond (b \diamond C) = (a \diamond b) \diamond c$ (associativity)
- $a \diamond b = b \diamond a$ (commutativity)
- $a \diamond a = a$ (idempotency)
- $a \lor (a \land b) = a$ and $a \land (a \lor b) = a$ (absorption)

Proposition. The two definitions of finite lattices are equivalent via:

 $(x \le y \quad \text{iff} \quad x = x \land y) \quad \text{and} \quad (x \le y \quad \text{iff} \quad x = x \lor y).$

Distributive Lattice

A lattice $L = (X, \lor, \land)$ is a distributive lattice iff $a \lor (b \land c) = (a \lor b) \land (a \lor c)$ and $a \land (b \lor c) = (a \land b) \lor (a \land c)$

FTFDL. *L* is a finite distributive lattice \iff there is a poset *P* such that that *L* is isomorphic to the inclusion order on downsets of *P*.

Linear Extensions

A linear extension of P = (X, <) is a linear order L, such that

• $x <_P y \implies x <_L y$

A family \mathcal{L} of linear extensions is a realizer for P = (X, <) provided that

* for every incomparable pair (x, y) there is an $L \in \mathcal{L}$ such that x < y in L.

The dimension, dim(P), of P is the minimum t, such that there is a realizer $\mathcal{L} = \{L_1, L_2, \dots, L_t\}$ for P of size t.

Dimension of Orders II

The dimension of an order P = (X, <) is the least *t*, such that *P* is isomorphic to a suborder of \mathbb{R}^t with the product ordering.

Dilworth's Imbedding Theorem (1950)

Theorem. dim (\mathcal{L}_P) = width(P).

- Let C₁,..., C_w be a chain partition of P.
 Imbed L_P in ℝ^w by I → (|I ∩ C₁|,..., |I ∩ C_w|).
- If P contains an antichain A of size w, then there is a Boolean lattice B_w in L_P. Hence dim(L_P) ≥ dim(B_w) = w.