Order and lattices from graphs

Spring School SGT 2018
Seté, June 11-15, 2018

Stefan Felsner

Technische Universität Berlin

Outline

Orders and Lattices

Definitions

The Fundamental Theorem
Dimension and Planarity
Lattices and Graphs

α-orientations
The ULD-Theorem
Δ-Bonds and Further Examples

Distributive Lattices and Markov Chains

Coupling from the Past
Mixing time on α-orientations

Finite Orders

$P=(X,<)$ is an order iff

- X finite set
- $<$ transitive and irreflexive relation on X.

Lattices

$P=(X,<)$ an order.

- Let $x \vee y$ be the least upper bound of x and y if it exists.
- Let $x \wedge y$ be the greatest lower bound of x and y if it exists.
$L=(X,<)$ is a finite lattice iff
- L is a finite order
- $x \vee y$ and $x \wedge y$ exist for all x and y.

Lattices - the algebraic view

$L=(X, \vee, \wedge)$ is a finite lattice iff

- X is finite and for all $a, b, c \in X$ and $\diamond \in\{\mathrm{V}, \wedge\}$
- $a \diamond(b \diamond C)=(a \diamond b) \diamond c$ (associativity)
- $a \diamond b=b \diamond a$ (commutativity)
- $a \diamond a=a$ (idempotency)
- $a \vee(a \wedge b)=a$ and $a \wedge(a \vee b)=a$ (absorption)

Proposition. The two definitions of finite lattices are equivalent via:

$$
(x \leq y \quad \text { iff } \quad x=x \wedge y) \quad \text { and } \quad(x \leq y \quad \text { iff } \quad x=x \vee y) .
$$

Distributive Lattice

A lattice $L=(X, \vee, \wedge)$ is a distributive lattice iff
$a \vee(b \wedge c)=(a \vee b) \wedge(a \vee c)$ and $a \wedge(b \vee c)=(a \wedge b) \vee(a \wedge c)$

FTFDL. L is a finite distributive lattice \Longleftrightarrow there is a poset P such that that L is isomorphic to the inclusion order on downsets of P.

Linear Extensions

A linear extension of $P=(X,<)$ is a linear order L, such that

- $x<p y \Longrightarrow x<L y$

Dimension of Orders I

A family \mathcal{L} of linear extensions is a realizer for $P=(X,<)$ provided that

* for every incomparable pair (x, y) there is an $L \in \mathcal{L}$ such that $x<y$ in L.

The dimension, $\operatorname{dim}(P)$, of P is the minimum t, such that there is a realizer $\mathcal{L}=\left\{L_{1}, L_{2} \ldots, L_{t}\right\}$ for P of size t.

Dimension of Orders II

The dimension of an order $P=(X,<)$ is the least t, such that P is isomorphic to a suborder of \mathbb{R}^{t} with the product ordering.

Dilworth's Imbedding Theorem (1950)

Theorem. $\operatorname{dim}\left(\mathcal{L}_{P}\right)=\operatorname{width}(P)$.

- Let C_{1}, \ldots, C_{w} be a chain partition of P.

Imbed \mathcal{L}_{P} in \mathbb{R}^{w} by $I \rightarrow\left(\left|I \cap C_{1}\right|, \ldots,\left|I \cap C_{w}\right|\right)$.

- If P contains an antichain A of size w, then there is a Boolean lattice \mathcal{B}_{w} in \mathcal{L}_{P}. Hence $\operatorname{dim}\left(\mathcal{L}_{P}\right) \geq \operatorname{dim}\left(\mathcal{B}_{w}\right)=w$.

