3. Übung "Graphen und Geometrie"

SoSe 2012

Stefan Felsner / Kolja Knauer

Aufgaben für Di. 15. Mai

- (1) Zeige: Wenn G 2-cell-Einbettungen in \mathbb{S}_h und $\mathbb{S}_{h'}$ mit $h \leq h'$ hat, dann hat G auch 2-cell-Einbettungen in \mathbb{S}_k für alle $h \leq k \leq h'$.
- (2) Am Ende des Beweises von $g(K_n) \leq \lceil \frac{(n-3)(n-4)}{12} \rceil$ wurde der Hilfsgraph G_k eingeführt. Zeige, dass G_k eine orientierbare Einbettung mit nur einem Face hat und dass er einen \mathbb{Z}_{12k+7} -Fluss besitzt, der jeden Wert in $\{1,\ldots,6k+3\}$ genau einmal annimmt.
- (3) Sei G=(V,E) ein zusammenhängender Graph. Um G im \mathbb{R}^d einzubetten wählen wir eine Partition $V=X\cup Y$ und eine beliebige Fixierung $f:Y\to\mathbb{R}^d$ der Y Knoten. Die Positionen der X Knoten werden durch das Minimum der Energiefunktion

$$\mathcal{E}(x) = \sum_{ij \in E} m_{ij} ||x_i - x_j||^2$$

festgelegt. Hier ist $x: V \to \mathbb{R}^d$ eine Abbildung mit $x_i = f(i)$ für alle $i \in Y$.

Zeige: Wenn $X, Y \neq \emptyset$ und $m_{ij} > 0$ für alle $ij \in E$, dann ist \mathcal{E} streng konvex und nimmt ein eindeutiges Minimum an.

(4) Sei Γ eine konvexe Zeichnung von G und $r \in \mathbb{R}^2$ ein Vektor. Mit \overrightarrow{G}_r bezeichnen wir die Orientierung von G mit Kanten

$$v \to w \iff \langle \Gamma(w) - \Gamma(v), r \rangle > 0.$$

Identifiziere Eigenschaften, die die Orientierungen, die als \overrightarrow{G}_r auftreten können, möglichst genau charakterisieren.

- (5) Zeige, dass die Menge der discrete harmonic functions von G = (V, E), mit Polen in $S \subset V$, einen Vektorraum bilden. Bestimme eine Basis.
- (6) Sei G ein zusammenhängender Graph mit $a, b, u \in V$. Sei

 $p(u) = \Pr(\text{ a random walk starting at } u \text{ visits } a \text{ before visiting } b)$

Der random walk wählt, wenn er sich in v aufhält, einen Nachbarn w von v aus der Gleichverteilung auf diesen Nachbarn und geht dann zum Knoten w.

Wie kann man p(u) berechnen?