Table of Content
Graphen und Geometrie
Sommersemester 2012
Stefan Felsner und Kolja Knauer
1 ,
2 ,
3 ,
4 ,
5 ,
6 ,
7 ,
8 ,
9 ,
10 ,
11 ,
12 ,
13 ,
14 ,
15 ,
16 ,
17 ,
18 ,
19 ,
20 ,
21 ,
22 ,
23 ,
24 ,
25
1. Vorlesung, Di. 9.4.2012
Grundlagen
Zeichnungen, Kreuzungen, planare Graphen
Der Jordansche Kurvensatz für polygonale Kurven
Nicht-planarität von K5
Euler Formel und Dualgraphen
Satz von Whitney (unique embedding of a 3-connected planar graph)
2. Vorlesung, Mo. 15.4.2012
Klassische Sätze über planare Graphen
Gradlinige Einbettungen
Satz von Schnyder und Dimension von Inzidenzordnungen
3. Vorlesung, Di. 16.4.2012
Hanani-Tutte Theoreme
Allgemeiner Hanani-Tutte mit Paritätsvektoren
Schwacher Hanani-Tutte mit Kantenkontraktion
Kreuzungsfreie gerade Kanten
4. Vorlesung, Mo. 23.4.2012
Graphen auf Flächen
Flächen als topologische Räume
2-Zell Einbettungen von Graphen
Kanonische Darstellung von Flächen
5. Vorlesung, Di. 24.4.2012
Euler Characteristik und Orientierbarkeit
Zwei Flächen sind homöomorph
genau dann wenn sie dieselbe Euler Characteristik und Orientierbarkeit haben.
6. Vorlesung, Mo. 30.4.2012
Kombinatorische Einbettungen
Geschlecht eines Graphen
7. Vorlesung, Mo. 7.5.2012
Geschlecht Vollständiger Graphen
Chromatische Zahl einer Fläche
Heawoods Theorem
8. Vorlesung, Di. 8.5.2012
Federeinbettungen (Tutte drawings)
Energiefunktion
Diskrete Harmonic Functions
GOOD Embeddings
9. Vorlesung, Mo. 14.5.2012
Resolution of drawings
Schnyder woods
Trees, Paths and Regions
S-GOOD embeddings
10. Vorlesung, Di. 15.5.2012
S-GOOD embeddings yield planar drawings
Empty-edge lemma
Schnyder's drawing theorem
Wedges of a vertex lemma
Empty-face lemma
Schnyder's dimension theorem
11. Vorlesung, Mo. 21.5.2012
Dimension of posets
Lower bound for dimension of non-planar graphs
Schnyder woods, Schnyder labelings and 3-orientations
are equivalent for triangulations
Schnyder woods and Schnyder labelings of 3-connected planar graphs
12. Vorlesung, Di. 22.5.2012
Convex drawings of 3-connected planar graphs
Dual pairs of Schnyder woods
Orthogonal surfaces and the Brightwell-Trotter Theorem
More compact convex drawings
Flips and Lattices
--> Slides
13. Vorlesung, Di. 29.5.2012
Contact representations in general
Triangle contact representations
Cartograms (contact representations with prescribed areas)
Cartograms with 4-sided polygons (darts)
14. Vorlesung, Mo. 4.6.2012
Planar bipolar orientations
Vertex the face property
Dual bipolar orientation
Visibility representations
Segments from ranks of vertices and faces
15. Vorlesung, Di. 5.6.2012
Segment contact representation of the angle graph
Compact visibility representations
Transversal structures
Compact straight line drawings of 4-connected
inner triangulations of a 4-gon
16. Vorlesung, Mo 11.6.2012
Koebe's circle packing theorem
Problem description and historical remarks
The iteration: increasing radii of HIGH vertices
Radii remain bounded
The layout fits
Primal-dual circle packing
17. Vorlesung, Di. 12.6.2012
Squarings
Bipolar orientations and separating decompositions
A flow from counting trees
Rotation-free flow and dual flow
Squarings from a linear system of equations
18. Vorlesung, Mo. 18.6.2012
Crossing numbers
Crossing number versus rectilinear crossing number
The crossing lemma
Optimality up to the constant
19. Vorlesung, Di. 19.6.2012
Crossing numbers of complete graphs
The randomized Moon construction on the sphere
A lower bound for the rectilinear crossing number
Connection with k-edges
The edge number of 1-reduced drawings
20. Vorlesung, Mo. 25.6.2012
Posets, Lattices, and distributive Lattices.
Birkhoff's Theorem a.k.a. The Fundamental Theorem of Finite Distributive Lattices
21. Vorlesung, Di. 26.6.2012
Embedding Distributive Lattices into the Integer Lattice
Embeddings as Chain-Partitioned Posets and Arc-Colored Digraphs
22. Vorlesung, Mo. 2.7.2012
The Distributive Lattice of α-Orientations of a Planar Graph
Tensions and Vertex-Potentials
23. Vorlesung, Di. 3.7.2012
The Distributive Lattice of Tensions and Potentials of a Digraph
Distributive Polyhedra
24. Vorlesung, Mo. 9.7.2012
Geometric Intersection Graphs
STRING-Graphs
Planar Grahs
Cocomparability Graphs
25. Vorlesung, Di. 10.7.2012
Coloring Geometric Intersection Graphs
Axis-alligned rectangles
Segement-graphs
Coloring Geometric Hypergraphs
Bottomless rectangles
Back to
main page.