Grundlagen Zeichnungen, Kreuzungen, planare Graphen Der Jordansche Kurvensatz für polygonale Kurven Nicht-planarität von K5 Euler Formel und Dualgraphen Satz von Whitney (unique embedding of a 3-connected planar graph)2. Vorlesung, Mo. 15.4.2012
Klassische Sätze über planare Graphen Gradlinige Einbettungen Satz von Schnyder und Dimension von Inzidenzordnungen3. Vorlesung, Di. 16.4.2012
Hanani-Tutte Theoreme Allgemeiner Hanani-Tutte mit Paritätsvektoren Schwacher Hanani-Tutte mit Kantenkontraktion Kreuzungsfreie gerade Kanten4. Vorlesung, Mo. 23.4.2012
Graphen auf Flächen Flächen als topologische Räume 2-Zell Einbettungen von Graphen Kanonische Darstellung von Flächen5. Vorlesung, Di. 24.4.2012
Euler Characteristik und Orientierbarkeit Zwei Flächen sind homöomorph genau dann wenn sie dieselbe Euler Characteristik und Orientierbarkeit haben.6. Vorlesung, Mo. 30.4.2012
Kombinatorische Einbettungen Geschlecht eines Graphen7. Vorlesung, Mo. 7.5.2012
Geschlecht Vollständiger Graphen Chromatische Zahl einer Fläche Heawoods Theorem8. Vorlesung, Di. 8.5.2012
Federeinbettungen (Tutte drawings) Energiefunktion Diskrete Harmonic Functions GOOD Embeddings9. Vorlesung, Mo. 14.5.2012
Resolution of drawings Schnyder woods Trees, Paths and Regions S-GOOD embeddings10. Vorlesung, Di. 15.5.2012
S-GOOD embeddings yield planar drawings Empty-edge lemma Schnyder's drawing theorem Wedges of a vertex lemma Empty-face lemma Schnyder's dimension theorem11. Vorlesung, Mo. 21.5.2012
Dimension of posets Lower bound for dimension of non-planar graphs Schnyder woods, Schnyder labelings and 3-orientations are equivalent for triangulations Schnyder woods and Schnyder labelings of 3-connected planar graphs12. Vorlesung, Di. 22.5.2012
Convex drawings of 3-connected planar graphs Dual pairs of Schnyder woods Orthogonal surfaces and the Brightwell-Trotter Theorem More compact convex drawings Flips and Lattices --> Slides13. Vorlesung, Di. 29.5.2012
Contact representations in general Triangle contact representations Cartograms (contact representations with prescribed areas) Cartograms with 4-sided polygons (darts)14. Vorlesung, Mo. 4.6.2012
Planar bipolar orientations Vertex the face property Dual bipolar orientation Visibility representations Segments from ranks of vertices and faces15. Vorlesung, Di. 5.6.2012
Segment contact representation of the angle graph Compact visibility representations Transversal structures Compact straight line drawings of 4-connected inner triangulations of a 4-gon16. Vorlesung, Mo 11.6.2012
Koebe's circle packing theorem Problem description and historical remarks The iteration: increasing radii of HIGH vertices Radii remain bounded The layout fits Primal-dual circle packing17. Vorlesung, Di. 12.6.2012
Squarings Bipolar orientations and separating decompositions A flow from counting trees Rotation-free flow and dual flow Squarings from a linear system of equations18. Vorlesung, Mo. 18.6.2012
Crossing numbers Crossing number versus rectilinear crossing number The crossing lemma Optimality up to the constant19. Vorlesung, Di. 19.6.2012
Crossing numbers of complete graphs The randomized Moon construction on the sphere A lower bound for the rectilinear crossing number Connection with k-edges The edge number of 1-reduced drawings20. Vorlesung, Mo. 25.6.2012
Posets, Lattices, and distributive Lattices. Birkhoff's Theorem a.k.a. The Fundamental Theorem of Finite Distributive Lattices21. Vorlesung, Di. 26.6.2012
Embedding Distributive Lattices into the Integer Lattice Embeddings as Chain-Partitioned Posets and Arc-Colored Digraphs22. Vorlesung, Mo. 2.7.2012
The Distributive Lattice of α-Orientations of a Planar Graph Tensions and Vertex-Potentials23. Vorlesung, Di. 3.7.2012
The Distributive Lattice of Tensions and Potentials of a Digraph Distributive Polyhedra24. Vorlesung, Mo. 9.7.2012
Geometric Intersection Graphs STRING-Graphs Planar Grahs Cocomparability Graphs25. Vorlesung, Di. 10.7.2012
Coloring Geometric Intersection Graphs Axis-alligned rectangles Segement-graphs Coloring Geometric Hypergraphs Bottomless rectangles