Graph Theory (DS II) - Sheet 8

Exercise 8.1.

Prove that $R(k,\ell) \leq R(k-1,\ell) + R(k,\ell-1)$. Use this to give a better upper bound for R(k,k) than the one from the lecture.

Exercise 8.2.

Let R(G, H) be the smallest integer R, such that any red-blue coloring of the edges of K_R contains a red subgraph G or a blue subgraph H.

- (a) What is $R(K_{1,m}, K_{n,1})$?
- (b) Show that $R(C_4, C_4) = 6$.

Exercise 8.3.

Do all of the domino tilings of the following boards have break-lines?

- (a) $4 \times k$.
- (b) $6 \times k$.
- (c) Characterize all values k, ℓ such that the $\ell \times k$ board has a break line for all domino tilings.

Exercise 8.4.

Prove that for any $n \in \mathbb{N}$, there is an $N \in \mathbb{N}$ big enough, such that no matter how you partition [N] into n parts P_1, \ldots, P_n , there will be a triple $x, y, z \in P_i$ in one of the parts, such that z = x + y.

Exercise 8.5.

- (a) Show that $R(3, 4) \le 10$.
- (b) Show that $R(3,4) \leq 9$.
- (c) Show that R(3,4) = 9,

Bonus Exercise

Color the point of \mathbb{N}^2 in the plane with r different colors. Is there always an isosceles triangle with one horizontal edge and one vertical edge whose vertices all have the same color?