9. Practice sheet for the lecture: Graph Theory (DS II)

Felsner/ Wesolek 12. December 2023

Due dates: 19./21. December https://page.math.tu-berlin.de/~felsner/Lehre/dsII23.html

- (1) Find a 2-connected graph which is not Eulerian, whose line graph¹ is Hamiltonian.
- (2) Suppose G is an n-vertex graph with $\delta(G) \geq \frac{n}{2} + 1$ and let $v_1, v_2, v_3 \in V(G)$ be pairwise distinct. Suppose G' is the graph obtained from G by adding two vertices x_1, x_2 and connecting x_1 to v_1, v_2 and x_2 to v_2, v_3 . Show that G' is Hamiltonian.
- (3) Let T be a tree on at least 3 vertices. Show that for any edge $xy \in E(T)$ there is a Hamilton cycle in T^3 which contains the edge xy.²
- (4) A permutation is a Baxter permutation if there are no indices i < j < k with $\pi_{j+1} < \pi_i < \pi_k < \pi_j$ nor with $\pi_j < \pi_k < \pi_i < \pi_{j+1}$.
 - (a) Show that the family of Baxter permutations of length n is a zigzag family.
 - (b) Research which objects are counted by Baxter numbers.
- (5) Let the binary code $v_A = (a_1, \ldots, a_n)$ of a set $A \subset [n]$ satisfy $a_i = 1$ if and only if $i \in A$. Let $S = {[n] \choose k}$. Show that there is a sequence of the vectors $\{v_A \mid A \in S\}$ such that consecutive vectors differ in exactly two entries.

¹The line graph H of a graph G is the graph with V(H) = E(G) and two vertices are connected in H if the corresponding edges in G are incident.

 $^{{}^{2}}T^{3}$ is the graph with vertex set $V(T^{3}) = V(T)$ and edge set $E(T^{3}) = \{\{u, w\} \mid 1 \leq dist_{T}(u, w) \leq 3\}$.