8. Practice sheet for the lecture:

Graph Theory (DS II)

Felsner/ Wesolek
05. December 2023

Due dates: 12./14. December
https://page.math.tu-berlin.de/~felsner/Lehre/dsII23.html
(1) Prove Cayleys formula using the matrix-tree-theorem.
(2) In this exercise you will give an alternative proof of the matrix-tree-theorem. Fix an orientation \vec{G} of a graph G. The oriented incidence matrix $W=W(\vec{G})$ is a $|V(\vec{G})| \times|E(\vec{G})|$ matrix such that for $e=(u, v)$ it holds that $W(u, e)=-1, W(v, e)=$ 1 and $W(z, e)=0$ if $z \neq u, v$.
(a) Let $L=L(G)$ be the Laplacian of G and L^{\prime} be the matrix obtained from L by deleting the first row and first column. Show that $L=W W^{T}$ and $L^{\prime}=\left(W^{\prime}\right)\left(W^{\prime}\right)^{T}$ where W^{\prime} is the matrix obtained from W by deleting the first row.
(b) Let S be a subset of $n-1$ edges of \vec{G}. Let W_{S}^{\prime} be the matrix obtained from W^{\prime} by deleting all columns except for those in S. Show that $\operatorname{det}\left(W_{S}^{\prime}\right)=1$ or $\operatorname{det}\left(W_{S}^{\prime}\right)=-1$ if S corresponds to a spanning tree of G, and $\operatorname{det}\left(W_{S}^{\prime}\right)=0$ otherwise.
(c) Use the Cauchy-Binet formula to show that $\operatorname{det}\left(L^{\prime}\right)$ is equal to the number of spanning trees in G.
The Cauchy-Binet formula states that for two $n \times m$ matrices A, B with $m \geq n$ it holds that

$$
\operatorname{det}\left(A B^{T}\right)=\sum_{S \subset[m],|S|=n} \operatorname{det}\left(A_{S}\right) \operatorname{det}\left(B_{S}\right),
$$

where A_{S} is the matrix obtained from A by deleting all columns except for those in S (equivalently for B_{S}).
(3) A universal de Bruijn sequence for n is an infinite sequence of symbols a_{1}, a_{2}, \ldots from the infinite alphabet \mathbb{N}_{0} such that for all m the first m^{n} symbols form a Memory Wheel over the alphabet $\{0, \ldots, m-1\}$, that is, a de Bruijn sequence for words of length n over the alphabet $\{0, \ldots, m-1\}$. Show, that there are universal de Bruijn sequences for all $n \in \mathbb{N}, n \geq 2$. (Hint: Find a way to extend the sequence for the first m^{n} symbols to the first $(m+1)^{n}$ by modelling the problem as an Euler cycle problem on a suitable directed graph.)
(4) How many possible ways are there to draw the "Haus vom Nikolaus" (See Figure 1)?

Figure 1: One of the ways of drawing the "Haus vom Nikolaus" without lifting the pen off of the paper while drawing nor drawing any edge twice, a popular German children's game

