7. Practice sheet for the lecture: Graph Theory (DS II)

Felsner/ Wesolek 28. November 2023

Due dates: 05./07. Dezember https://page.math.tu-berlin.de/~felsner/Lehre/dsII23.html

(1)

- (a) Show that $R(3,4) \le 10$.
- (b) Improve (a) to $R(3,4) \le 9$.
- (c) Show that R(3,4) = 9.
- (2) Let R(G, H) be the smallest integer R such that any red-blue coloring of the edges of K_R contain a red subgraph G or a blue subgraph H.
 - (a) What is $R(K_{1,m}, K_{1,n})$? (exactly, for any given $m, n \in \mathbb{N}$)
 - (b) Show $R(C_4, C_4) = 6$.
- (3) Prove that for any $n \in \mathbb{N}$ there is an $N \in \mathbb{N}$ big enough such that no matter how you partition [N] into n parts P_1, \ldots, P_n , there will be a triple $x, y, z \in P_i$ for some i such that x = z + y. [Hint: Colour edges, $N = R_2(n; 3, 3, \ldots, 3)$ is big enough.]
- (4) Show that if $N \ge R_3(2; t, t)$, then any set of N points in general position contains a subset of t points in convex position. [Hint: Consider triplets of points and the order in which they appear in clockwise direction.]