7. Practice sheet for the lecture:

Graph Theory (DS II)
Due dates: 05./07. Dezember
https://page.math.tu-berlin.de/~felsner/Lehre/dsII23.html
(1)
(a) Show that $R(3,4) \leq 10$.
(b) Improve (a) to $R(3,4) \leq 9$.
(c) Show that $R(3,4)=9$.
(2) Let $R(G, H)$ be the smallest integer R such that any red-blue coloring of the edges of K_{R} contain a red subgraph G or a blue subgraph H.
(a) What is $R\left(K_{1, m}, K_{1, n}\right)$? (exactly, for any given $m, n \in \mathbb{N}$)
(b) Show $R\left(C_{4}, C_{4}\right)=6$.
(3) Prove that for any $n \in \mathbb{N}$ there is an $N \in \mathbb{N}$ big enough such that no matter how you partition $[N]$ into n parts P_{1}, \ldots, P_{n}, there will be a triple $x, y, z \in P_{i}$ for some i such that $x=z+y$. [Hint: Colour edges, $N=R_{2}(n ; 3,3, \ldots, 3)$ is big enough.]
(4) Show that if $N \geq R_{3}(2 ; t, t)$, then any set of N points in general position contains a subset of t points in convex position. [Hint: Consider triplets of points and the order in which they appear in clockwise direction.]

