6. Practice sheet for the lecture: Graph Theory (DS II)

Felsner/ Wesolek 20. November 2023

Due dates: 28./30. November https://page.math.tu-berlin.de/~felsner/Lehre/dsII23.html

(1) Recall that the edit distance d_E between two graphs G, G' on n vertices is defined as

$$d_E(G,G') = \frac{1}{n^2} \sum_{i,j=1}^n |A(G)_{ij} - A(G')_{ij}|.$$

Prove that for the cut distance d_{\Box} it holds that

$$d_{\Box}(G, G') \le d_E(G, G').$$

- (2) Find the limit of the graph sequence G_1, G_2, \ldots
 - (a) G_n is a tree on *n* vertices (here we have some fixed tree for every $n \in \mathbb{N}$).
 - (b) Let 0 < r < 1 be fixed. Let G_n be the *n*-vertex graph with $i \sim j$ if and only if $|i j| \leq rn$.
- (3) This exercise is to show that for a tree T on t edges it holds that $ex(n,T) \leq (t-1)n$.
 - (a) Show that a graph with average degree d contains a subgraph with minimum degree greater than $\frac{d}{2}$.
 - (b) Show $ex(n,T) \leq (t-1)n$.
- (4) Use Zykov-symmetrization to show the following. Let $n \ge k+1$. Then

 $ex(n, K_3, K_{k+1}) = \#$ triangles in K_{n_1, \dots, n_k} ,

for some integers $n_1, n_2, \ldots, n_k \ge 0$ with $n = \sum_{i=1}^k n_i$.

[Hint: http://www.sfu.ca/~agwesole/Hinweis3]

- (5) Let G = (V, E) be a graph. The Wei inequality says $\alpha(G) \ge \sum_{v \in V(G)} \frac{1}{d_v + 1}$. Characterize the graphs with equality $\alpha(G) = \sum_{v \in V(G)} \frac{1}{d_v + 1}$.
- (6) [Bonus¹] Show that for every $\varepsilon > 0$ there is some $\varepsilon' > 0$ such that if G is an N-vertex graph with fewer than $\varepsilon' N^4$ copies of K_4 , then G can be made K_4 -free by removing at most εN^2 edges.

¹This question is completely optional. It should help you understand the lecture better, so I recommend going through it.