4. Practice sheet for the lecture:

Felsner/ Wesolek
Graph Theory (DS II)
05. November 2023

Due dates: 14./16. November
https://page.math.tu-berlin.de/~felsner/Lehre/dsII23.html
(1) A connected graph with at most one simple cycle is called a pseudotree. Prove that any two of these properties imply the third one:

- G is a pseudotree.
- G is connected and has n edges.
- There is an edge $e \in E(G)$ such that $G-e$ is connected.
(2) Given a graph $G=(V, E)$ and two spanning trees $T_{1}=\left(V, E_{1}\right)$ and $T_{2}=\left(V, E_{2}\right)$ of G, show that for every edge $e_{1} \in E_{1} \backslash E_{2}$ there is an edge $e_{2} \in E_{2} \backslash E_{1}$ such that $T_{1}^{\prime}=\left(V,\left(E_{1} \backslash\left\{e_{1}\right\}\right) \cup\left\{e_{2}\right\}\right)$ and $T_{2}^{\prime}=\left(V,\left(E\left(T_{2}\right) \backslash\left\{e_{2}\right\}\right) \cup\left\{e_{1}\right\}\right)$ are also both spanning trees of G .
(3) Let X be a set of n points on a circle. Let D_{n} be a drawing of K_{n} on X with straight line edges. A non-crossing spanning path P_{n} of D_{n} is a spanning path in the corresponding K_{n} such that no edges of P_{n} cross in D_{n}. Show that if n is even, the edges of K_{n} can be partitioned into non-crossing spanning paths.
(4) Let X be a set of n points on a circle and T be a non-crossing straight line tree on the point set X. That is, the edges of T are straight lines and none of the edges cross. A flip in T is a removal of an edge $e \in T$ and an addition of an edge $e^{\prime} \notin T$ such that $T^{\prime}=T \backslash e \cup e^{\prime}$ is a non-crossing straight line tree. Let T_{1}, T_{2} be two noncrossing straight line trees on X. Show that there are at most $2 n-4$ flips needed to transform T_{1} into T_{2} for $n \geq 3$.

Figure 1: A flip.
(5) Let $K_{m, n}$ be the complete bipartite graph with parts $\left\{1^{\prime}, \ldots, m^{\prime}\right\}$ as well as $\{1, \ldots, n\}$.
(a) How many spanning trees does $K_{2, n}$ have? How many non-isomorphic ones?
(b) How many spanning trees does $K_{3, n}$ have? How many non-isomorphic ones? [This is a rounded polynomial but a not fully simplified sum is acceptable.]
(c) Let $m \leq n$. How many spanning trees does $K_{m, n}$ have?
[Hint: Clarke's proof of the Cayley formula can be adapted to $K_{m, n}$.]

