3. Practice sheet for the lecture:

Graph Theory (DS II)
Due dates: 07./09. November
https://page.math.tu-berlin.de/~felsner/Lehre/dsII23.html
(1) Suppose P is a path between two vertices u, v in a graph G with $\kappa(G) \geq 2$. Prove or disprove: There exists a path Q which is internally vertex-disjoint from P.
(2) Suppose G has $\kappa(G)=2$.
(a) Let G^{\prime} be obtained from G by subdividing an edge $e \in E(G)$ (that is, replacing e by a path of length 2, see Figure 1). Show that $\kappa\left(G^{\prime}\right)=2$.
(b) Show that any two edges of G are on a common circle.

Figure 1: Subdividing an edge.
(3) Let T be a tree on $n \geq 3$ vertices and $x_{i}=\mid\{v \mid d(v)=i\}$.
(a) Show that

$$
\sum_{i=3}^{n-1}(i-2) x_{i}=x_{1}-2
$$

(b) How many non-isomorphic trees with 5 leaves and no vertex of degree 2 exist?
(4) Let G be a connected graph that does not contain P_{4} or K_{3} as induced subgraphs (P_{4} is a path with 4 vertices). Prove that G is a complete bipartite graph.
(5) The girth of a graph G, denoted $g(G)$, is the length of the shortest cycle in G.
(a) Show that if an n-vertex graph is d-regular and has girth $g=2 k+1$ for $k \geq 1$, then

$$
n \geq d \sum_{i=0}^{k-1}(d-1)^{i}+1
$$

(b) Provide an example to show the bound is tight when $d=3$ and $g=5$. [Hint:http://www.sfu.ca/~agwesole/Hinweis2]

