14. Practice sheet for the lecture:
 Graph Theory (DS II)

Due dates: 06./ 08. February
https://page.math.tu-berlin.de/~felsner/Lehre/dsII23.html
(1) If $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{n}\right)$ is any permutation of the numbers from $1 \ldots n$, then the permutation graph on π is the graph where $i \sim j$ for $i<j$ if j appears before i in π.
(a) What does the clique number $\omega(G)$ and the independence number $\alpha(G)$ correspond to in a permutation graph G ?
(b) Give an efficient algorithm to compute $\alpha(G)$.
(c) Are permutation graphs perfect?
(2) Show that:
(a) If a collection of (connected) subtrees $T_{1}, T_{2}, \ldots, T_{\ell}$ of a tree T pairwise intersect $\left(V\left(T_{i}\right) \cap V\left(T_{j}\right) \neq \emptyset\right)$, then they share a common vertex $\left(V\left(T_{1}\right) \cap V\left(T_{2}\right) \cap\right.$ $\left.\cdots \cap V\left(T_{\ell}\right) \neq \emptyset\right)$.
(b) Conclude that a graph of treewidth k does not contain K_{k+2} as a subgraph.
(a) Show that every graph of treewidth k is a subgraph of a chordal ${ }^{1}$ graph G with clique number $\omega(G)=k+1$.
(b) Show that every graph with treewidth at most k has a vertex of degree at most k.
(4) Show that there is an algorithm for the maximum independent set problem with running time $2^{k} \cdot O\left(n^{2}\right)$ when given a graph on n vertices and a tree decomposition of the graph with width at most k and $O(n)$ nodes.
Hint: https://www.sfu.ca/~agwesole/Hinweis7
(5) Suppose T is the 3 -ary tree ${ }^{2}$ of height h. Show by induction that the pathwidth of T is at least $h-1$.

[^0]
[^0]: ${ }^{1} \mathrm{~A}$ graph is a chordal graph if it has no induced cycle of length at least 4.
 ${ }^{2}$ that is the rooted tree such that all vertices at distance at most $h-1$ from the root have degree 3 and all vertices at distance h are leaves

