12. Practice sheet for the lecture: Graph Theory (DS II)

Felsner/ Wesolek

16. January 2024

Due dates: 23./25. January

https://page.math.tu-berlin.de/~felsner/Lehre/dsII23.html

(1) Adapt the random construction of Moon to obtain a drawing of $K_{n,m}$ with expected number of crossings equal to $\frac{1}{4} \binom{n}{2} \binom{m}{2}$.

- (2) Find lower bounds on the crossing number of K_n .
 - (a) Show that the crossing number of K_6 is 3.
 - (b) Find a lower bound for K_n based on the fact that the crossing number of K_5 is 1.
 - (c) Improve your bound from (b) by using 1 that the crossing number of K_{12} is 150.
- (3) For any sets P of n points and L of m lines in the plane, let I(P,L) denote the set of incidences, that is $I(P,L) = \{(p,\ell) \in P \times L \mid p \in \ell\}$. Prove that $|I(P,L)| \le 4 \max(n^{2/3}m^{2/3},n) + m$. [Hint: Make a sketch and find a graph with n vertices and I(P,L) m edges.]
- (4) Suppose you are given a triangulation and three vertices v_1, v_2, v_n that lie on the outer face. Construct a canonical ordering v_1, \ldots, v_n of the vertices, that is, an ordering such that:
 - the graph drawing D_k induced by $\{v_1, \ldots, v_k\}$ is internally triangulated for $k \in \{3, \ldots, n\}$,
 - v_1v_2 is on the outer cycle of D_k for all $k \in \{3, \ldots, n\}$,
 - v_{k+1} is on the outer face of G_{k+1} and its neighbours appear consecutively along the outer face of G_k for all $k \in \{3, \ldots, n-1\}$.
- (5) For each integer $n \geq 3$ find an outerplanar graph which contains all outerplanar graphs of order n as subgraphs.

¹without proof