12. Practice sheet for the lecture:

Graph Theory (DS II)
16. January 2024

Due dates: 23./25. January
https://page.math.tu-berlin.de/~felsner/Lehre/dsII23.html
(1) Adapt the random construction of Moon to obtain a drawing of $K_{n, m}$ with expected number of crossings equal to $\frac{1}{4}\binom{n}{2}\binom{m}{2}$.
(2) Find lower bounds on the crossing number of K_{n}.
(a) Show that the crossing number of K_{6} is 3 .
(b) Find a lower bound for K_{n} based on the fact that the crossing number of K_{5} is 1 .
(c) Improve your bound from (b) by using ${ }^{1}$ that the crossing number of K_{12} is 150 .
(3) For any sets P of n points and L of m lines in the plane, let $I(P, L)$ denote the set of incidences, that is $I(P, L)=\{(p, \ell) \in P \times L \mid p \in \ell\}$. Prove that $|I(P, L)| \leq$ $4 \max \left(n^{2 / 3} m^{2 / 3}, n\right)+m$. [Hint: Make a sketch and find a graph with n vertices and $I(P, L)-m$ edges.]
(4) Suppose you are given a triangulation and three vertices v_{1}, v_{2}, v_{n} that lie on the outer face. Construct a canonical ordering v_{1}, \ldots, v_{n} of the vertices, that is, an ordering such that:

- the graph drawing D_{k} induced by $\left\{v_{1}, \ldots, v_{k}\right\}$ is internally triangulated for $k \in$ $\{3, \ldots, n\}$,
- $v_{1} v_{2}$ is on the outer cycle of D_{k} for all $k \in\{3, \ldots, n\}$,
- v_{k+1} is on the outer face of G_{k+1} and its neighbours appear consecutively along the outer face of G_{k} for all $k \in\{3, \ldots, n-1\}$.
(5) For each integer $n \geq 3$ find an outerplanar graph which contains all outerplanar graphs of order n as subgraphs.

[^0]
[^0]: ${ }^{1}$ without proof

