13. Übungsblatt zur Vorlesung: Graphentheorie (DS II)

Felsner/ Schröder 31. Januar 2021

Besprechungsdatum: 7./10. Februar http://www.math.tu-berlin.de/~felsner/Lehre/dsII21.html

(1) Planar edge coloring:

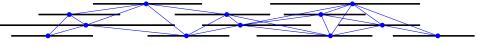
A planar edge coloring is a coloring of the edges of a plane graph (planar with a fixed planar drawing) such that any two edges that share a vertex and a face receive different colors. Denote the minimum number of colors in such a coloring by $\chi'_{nl}(G)$.

- (a) Prove that if T is a triangulation, then $\chi'_{pl}(T) = 3$.
- (b) Find an example of a planar graph G with $\chi'_{pl}(G) > 3$.
- (*) Prove that $\chi'_{pl}(G) \leq 4$ for all 2-connected plane graphs G. [Remark: You may use that planar graphs are 4-colorable.]
- (2) Even more triangle-free graphs with high chromatic number: Consider the *Double Shift graphs* S(3, n). The vertices of S(3, n) are triples (a, b, c) of integers $1 \le a < b < c \le n$ with edges (a, b, c)(b, c, d). Show:

$$\chi(S(3,n)) \ge \log_2 \log_2 n$$

[Hint: Similarly to the shift graphs S(2, n) let $\mathcal{F}_{b,c}$ be the set of colors used for vertices of the kind (a, b, c).]

(3) Let \mathcal{I} be a family of intervals ($\subseteq \mathbb{R}$). We define the intersection graph $G_{\mathcal{I}}$ corresponding to \mathcal{I} : For each interval $I \in \mathcal{I}$ there is a vertex v_I and an edge (v_I, v_J) exists if and only if the corresponding intervals I and J intersect, i.e. if $I \cap J \neq \emptyset$.



Show that $G_{\mathcal{I}}$ is perfect.

- (4) Complements are perfect graphs / Theorem of Kőnig-Egerváry
 - (a) Show: G bipartite $\implies \overline{G}$ is perfect.
 - (b) Show: G bipartite $\implies \overline{\mathcal{L}(G)}$ is perfect.
- (5) De Bruijn graphs of Type I/II: Let $G_n(m)$ be the underlying simple undirected graph of the de Bruijn graph $\mathcal{B}_n(m)$.
 - (a) Show that for n > 2 odd:

$$\chi'(G_n(m)) = \Delta(G_n(m)) \tag{1}$$

(b) Find an m, such that $G_2(m)$ and $G_1(m)$ do not satisfy Equation 1.