12. Übungsblatt zur Vorlesung: Graphentheorie (DS II)

Felsner/ Schröder 24. Januar 2022

Besprechungsdatum: 31. Januar/3. Februar http://www.math.tu-berlin.de/~felsner/Lehre/dsII21.html

- (1) More triangle-free graphs with large chromatic number (Tutte): Given a triangle-free graph G_k with $\chi(G_k) \ge k$ and n vertices, let G_{k+1} have an independent vertex set X of k(n-1)+1 vertices and for all $Y \subset X, |Y| = n$ a copy of G_k , that is connected to Y by a perfect matching. Show that G_{k+1} is triangle-free and that $\chi(G_{k+1}) \ge k+1$.
- (2) Greedy coloring worst case:
 - (a) Show that there is a bipartite graph on 2n vertices and an order of them, such that the Greedy algorithm uses n colors to color it instead of 2.
 - (b) Show that there is a planar graph on 2^n vertices and an order of them such that the Greedy algorithm uses more than n colors to color it.
- (3) Let there be some lines in the plane, such that no three intersect in a single point. Let the intersection points of these lines be the vertices of a graph G. Two such vertices are adjacent, if they are consecutive on one of the lines. Show that $\chi(G) \leq 3$.

(4) Degeneracy

(a) Let G be k-degenerate. Prove that

$$\max\{\delta(H) \mid H \text{ subgraph of } G\} \le k \tag{1}$$

- (b) Now suppose Equation (1) holds. Show that G is k-degenerate.
- (c) What is the largest number of edges a k-degenerate graph can have?
- (5) A graph G is k-chromatic critical if $\chi(G) = k$, but removing any vertex or edge of the graph leaves the rest (k 1)-colorable.
 - (a) Find all k-chromatic critical graphs for $k \leq 3$ and an infinite family of such graphs for $k \geq 3$.
 - (b) Prove that a triangulation is 3-colorable if and only if it is Eulerian.[Hint: Generalize the 3-chromatic critical graphs to 4 in a suitable way.]