11. Übungsblatt zur Vorlesung: Graphentheorie (DS II)

Felsner/ Schröder 17. Januar 2022

Besprechungsdatum: 24./27.Januar http://www.math.tu-berlin.de/~felsner/Lehre/dsII21.html

- (1) A 3-orientation of a triangulation is an orientation of the inner edges such that any inner vertex has exactly 3 outgoing edges.
 - (a) Show that there is a 3-orientation for every triangulation.
 - (b) Show that there are exactly as many 3-orientations of a given triangulation as there are Schnyder Woods.
 - (c) For every $n \in \mathbb{N}$, $n \ge 4$, find a triangulation on n vertices that admits exactly 1 Schnyder Wood.
- (2) Center Point Theorem:

Show that for any k pointsets $P_1, \ldots, P_k \subset \mathbb{R}^d$, there is a (k-1)-dimensional flat F (that is, F = V + t, where V is a (k-1)-dimensional subspace of \mathbb{R}^d and $t \in \mathbb{R}^d$) such that for every $i \in [k]$, any hyperplane containing F has at most $\frac{d|P_i|}{d+1}$ points of P_i on either side.

(3) The treedepth of a graph G is the smallest height of a tree T rooted in r, such that G is a subgraph of

 $(V(T), \{vw|v \text{ is an ancestor of } w \text{ or vice-versa.}\})$

Prove that a planar graph G on n vertices has treedepth at most $\frac{\sqrt{2n}}{1-\sqrt{3}}$.

- (4) Prove or disprove:
 - (a) Let G be a graph with $\chi(G) = k$. Then G has a k-coloring, where one of the color classes has size $\alpha(G)$.
 - (b) $\chi(G) \leq \overline{d}_G + 1$ for connected G, where $\overline{d}_G = \frac{2|E|}{|V|}$ is the average degree of G.
 - (c) Every graph G can be colored with td(G) colors, where td is the treedepth.
- (5) A plane simple graph G on $n \ge 4$ vertices is a quadrangulation, if every face has degree 4 (even the outer face).
 - (a) Prove that quadrangulations can be colored with 2 colors.
 - (b) Prove that any bipartite, planar graph is a subgraph of a quadrangulation.
 - (c) Prove that any quadrangulation is 2-connected.