3. Übungsblatt zur Vorlesung: Graphentheorie (DS II)

Felsner/ Schröder 8. November 2021

Besprechungsdatum: 15./18. November http://www.math.tu-berlin.de/~felsner/Lehre/dsII21.html

- (1) Let $K_{m,n}$ be the complete bipartite graph with parts $\{1', \ldots, m'\}$ as well as $\{1, \ldots, n\}$. [Remark: This exercise gives 2 points.]
 - (a) How many spanning trees does $K_{2,n}$ have? How many non-isomorphic ones?
 - (b) How many spanning trees does $K_{3,n}$ have? How many non-isomorphic ones? [This is a rounded polynomial but a not fully simplified sum is acceptable.]
 - (c) Let $m \leq n$. How many spanning trees does $K_{m,n}$ have? [Hint: Clarke's proof of the Cayley formula can be adapted to $K_{m,n}$.]
- (2) G is a Laman graph, if it has 2|V(G)| 3 vertices and all of its subgraphs H with at least 2 vertices have at most 2|V(H)| 3 edges.
 - (a) Show that every Laman graph can be obtained from K_2 by a sequence of socalled Henneberg steps: Either add a vertex of degree 2 adjacent to any two vertices of the graph (H_1) or replace an edge connecting two vertices u and vby a vertex x adjacent to u, v and any third vertex (H_2) .

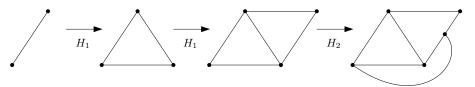


Figure 1: A graph constructed by Henneberg steps H_1 and H_2

- (b) Prove that in every Laman graph, there are two spanning trees that share exactly one edge.
- (3) Let $d_1, ..., d_n \in \mathbb{N}$ such that their sum is 2n 2. From exercise (2a) on sheet 2 we know that $(d_1, ..., d_n)$ is the degree sequence of a tree, if and only if $\sum d_i = 2n 2$. Show that there are

$$\frac{(n-2)!}{\prod_i (d_i-1)!}$$

trees with vertex set [n], such that vertex i has degree d_i . [We clearly do not ask for isomorphism classes here.]

- (4) A connected graph with at most one simple cycle is called a *pseudotree*. Prove that any two of these properties are equivalent:
 - G is a pseudotree.
 - G has n edges.
 - There is an edge $e \in E(G)$ such that G e is connected.