2. Übungsblatt zur Vorlesung: Graphentheorie (DS II)

Felsner/ Schröder 2. November 2021

Besprechungsdatum: 8. /11. November http://www.math.tu-berlin.de/~felsner/Lehre/dsII21.html

- (1) Degree sequences
 - (a) Show that $(d_1, ..., d_n)$ with $d_i > 0$ for all i = 1, ..., n is the degree sequence of a tree, if and only if $\sum_{i=1}^n d_i = 2n 2$.
 - (b) Let $d_1 < d_2 < \ldots < d_k$ be natural numbers. Show that a graph G with $d_k + 1$ vertices exists, such that $\{d_1, d_2, \ldots, d_k\}$ is the set of degrees of G.

(2) Connectivity

- (a) Let H_d be the *d*-dimensional Hypercube. Show $\kappa(H_d) = d$.
- (b) Show, that in a k-connected graph with n vertices, there are at least $\lceil \frac{kn}{2} \rceil$ edges. Actually, there are graphs with exactly this many edges for almost all pairs (k, n) with $k \leq n$. Show this for as many pairs as possible.
- (3) Radius, diameter, girth
 - (a) Prove that $girth(G) \le 2 \operatorname{diam}(G) + 1$ for every graph which has at least one simple cycle.
 - (b) Do some research on the topic of Moore graphs, in particular, give some examples, show the relation with (a) and prove at least one other interesting property that they have.
 - (c) Show that the inequality $\operatorname{rad}(G) \leq \operatorname{diam}(G) \leq 2\operatorname{rad}(G)$ is tight by giving for $k \in \mathbb{N}$ and both inequalities one graph G each, such that $\operatorname{rad}(G) = k$ and such that G fulfills the inequality as an equality.
- (4) Let T be a tree with $n \ge 3$ and $x_i = |\{v \mid d(v) = i\}|.$
 - (a) Show $\sum_{i=3}^{n-1} (i-2)x_i = x_1 2$
 - (b) How many different (non-isomorphic) trees with 5 leaves and without vertices of degree 2 are there?
- (5) Prove the undirected p-q edge version of the Theorem of Menger. [Hint: Use the undirected p-q vertex version from the lecture]