10. Practice sheet for the lecture: Vorlesung über Graphentheorie/ Graphtheory (DS II)
http://page.math.tu-berlin.de/~felsner/Lehre/dsII11.html

Felsner, Heldt
16. December
(1) Let $G$ be a bipartite graph. From the lecture we know that $G$ and $\mathcal{L}(G)$ are perfect.
(a) Prove: The complement $\bar{G}$ of $G$ is perfect.
(b) Prove: $\overline{\mathcal{L}(G)}$ is perfect.
(2)
(a) What is the list chromatic number of the graph below?

(b) Let $G$ be a connected graph and $L$ a set of lists of colors for every vertex, such that for every vertex $v$ we have a list of colors $L(v)$ with $|L(v)| \geq \operatorname{deg}(v)$ and there is at least one vertex $w$ such that $|L(w)|>\operatorname{deg}(w)$. Prove that $G$ can be colored properly with the lists in $L$.
(c) Prove or disprove: The list chromatic number of $G \square H$ equals the maximum of the list chromatic number of $H$ and of $G$.
(3) Let $G$ be a graph and $p_{G}(x)$ the chromatic polynomial of $G$. Further, Let $G / e$ be the graph, which is obtained by contracting the edge $e \in E$, i.e. merging the endpoints of the edge $e$ and removing all created loops and $G-e$ the graph, which is obtained by deleting $e$. Prove the deletion-contraction formula for $e \in E$ :

$$
p_{G}(x)=p_{(G-e)}(x)-p_{(G / e)}(x)
$$

(4) A quasi-kernel of a digraph $D$ is a subset of its vertices $U$, which forms an independent set and has the additional property, that for every vertex $v \notin U$ there is a directed path of length $\leq 2$ starting in $v$ and ending in $U$. Show, that every digraph has a quasi-kernel.

Hint: Take a permutation $\pi$ of the vertices of $D$ and split up the edge set of $D$ into forward and backward edges (i.e. edges $(i, j)$ with $\pi_{i}<\pi_{j}$ are forward edges, all other backward edges) and consider the graphs $D_{\rightarrow}:=\left(V(D)\right.$, \{all forward edges\}) and $D_{\leftarrow}:=$ $(V(D),\{$ all backward edges $\})$.
(5) A graph is chromatically unique if it is determined by its chromatic polynomial, up to isomorphisms; i.e. there is no non-isomorphic graph, which has the same chromatic polynomial.
(a) Prove that $G$ and $H$ have the same chromatic polynomial.

(b) Prove, that two graphs $G$ and $H$, having the same chromatic polynomial, have the same number of vertices and edges.
(c) Prove that $K_{n}$ is chromatically unique. Compute the chromatic polynomial of $C_{n}$.

