7. Practice sheet for the lecture: Vorlesung über Graphentheorie/ Graphtheory (DS II)
http://page.math.tu-berlin.de/~felsner/Lehre/dsII11.html

Felsner, Heldt
23. November
(a) Find $k, n \in \mathbb{N}$ such that $T_{k}(n)$ is the smallest (with respect to the number of edges) Turán graph, which contains the Petersen graph as subgraph.
(b) Find $k, n \in \mathbb{N}$ such that $T_{k}(n)$ is the smallest regular Turán graph, which contains the Petersen graph as subgraph.
(2) Let $G=(V, E)$ be a graph with $n \geq 3$ vertices and at least $\left(\frac{1}{4}+c\right) \cdot n^{2}$ edges for some $c>0$. Let $d_{G}:=\frac{1}{n} \sum v \in V \operatorname{deg}(v)$ be the average degree of G. Then

$$
\begin{aligned}
\text { \# triangles in } G & \geq \frac{1}{3} \sum_{\{u, v\} \in E}(\operatorname{deg}(u)+\operatorname{deg}(v)-n) \\
& =\frac{1}{3}\left(\sum_{u \in V} \operatorname{deg}(u)^{2}-n|E|\right) \\
& \geq \frac{1}{3}\left(n \cdot d_{G}{ }^{2}-n|E|\right) \\
& =\frac{1}{3}\left(n \cdot d_{G} \cdot\left(d_{G}-\frac{n}{2}\right)\right) \\
& =\frac{1}{3} n \cdot\left(\frac{1}{2} n+2 c \cdot n\right) \cdot(2 \cdot c \cdot n) \\
& \geq 2 c\binom{n}{3}
\end{aligned}
$$

Explain all steps of this proof in detail.
(3) Let $G=(V, E)$ be a graph with vertices $V=[2 n]=\{1,2, \ldots, 2 n\}$ and $V_{\text {blue }} \cup V_{\text {red }}=V$ a partition of its vertices. Further, let $S \subseteq E$ be the cut [$V_{b l u e}, V_{\text {red }}$], i.e. the set of edges, which have one endpoint in $V_{\text {blue }}$ and one in $V_{\text {red }}$. We call S a balanced cut, if $V_{\text {blue }}$ and $V_{\text {red }}$ have the same size. Let $\Omega=\binom{[2 n]}{n}$ be the set of balanced cuts of G and $\operatorname{Pr}(\omega)=\operatorname{Pr}\left(\omega^{\prime}\right)$ for all $\omega, \omega^{\prime} \in \Omega$. What is the expected value of the size of a balanced cut?
Hint: make use of the linearity of the expected value and compute the probability that a fixed edge is in S.
(4) Prove that a simple graph is a complete multipartite graph if and only if it has no 3 -vertex induduced subgraph with one edge.
(5) Please hand in your solution of this exercise: Let G be a graph on n vertices with average degree d_{G}. Prove $\alpha(G) \geq \frac{n}{d_{G}+1}$.

