(1)

- (a) Characterize all graphs G which have the property, that all induced subgraphs of G are connected.
- (b) Find a graph G which is Eulerian and not Hamiltonian and a graph H, which is Hamiltonian and not Eulerian.

(2)

- (a) Prove that the maximum absolute value of an eigenvalue of the adjacency matrix A of a graph G is at most as big as the maximum of the degrees of the vertices of G. To show this, consider general matrices B and the relation of their maximum row-sums and eigenvalues.
- (b) Let G be a d-regular bipartite graph, and let A be its adjacency matrix. Prove that -d is an eigenvalue of A and find the corresponding eigenvector. Prove further, that for every eigenvalue μ of A, $-\mu$ is also an eigenvalue. Do you need the regularity of G to prove the second result?
- (c) What are the eigenvalues of the adjacency matrix of $K_{m,n}$?

(3)

- (a) Prove: The De Bruijn graph $B_n(m)$ contains a set of m edge-disjoint arborescences. Can it contain more?
- (b) Prove: The De Bruijn graph $B_n(m)$ is *m*-edge connected.
- (c) Prove: The De Bruijn graph $B_n(m)$ is *m*-vertex connected.
- (4) Let $f: V(B_n(2)) \to V(B_{n-1}(2))$ be the mapping from the vertices of the De Bruijn graph $B_n(2)$ to the Vertices of $B_{n-1}(2)$, which maps $(a_1, \ldots, a_n) \in B_n$ to $(a_1+a_2, a_2+a_3, \ldots, a_{n-1}+a_n) \in B_{n-1}$ with the addition from \mathbb{F}_2 (i.e. $1+1=0\ldots$). Let $C=(e_1,\ldots,e_{2^{n-1}})$ be an Euler tour in $B_{n-1}(2)$. Use f to lift C twice to $B_n(2)$, i.e. find $C'=(e'_1,\ldots,e'_{2^{n-1}})$ and $C''=(e''_1,\ldots,e''_{2^{n-1}})$ in B_n with f(C')=C=f(C'') and use C' and C'' to construct an Euler tour of $B_n(2)$.