5. Practice sheet for the lecture: Vorlesung über Graphentheorie/ Graphtheory (DS II)

Felsner, Heldt
10. November
(1) Let G be a graph and L the Laplacian matrix of G. Further, let k be the multiplicity of the eigenvalue 0 of L. Prove, that k equals the number of connected components of G.
(2) Prove Cayley's formula using the matrix-tree-theorem.
(3) Let $G_{a, b}$ be the B-Flower. Then $G_{a, b}$ consists of a basic cycle $\left\{v_{1}, v_{2}, \ldots, v_{a}\right\}$ of length a and a cycles $P_{i}=\left\{v_{i}, w_{i, 1}, \ldots, w_{i, b-1}\right\}$ for $i=1, \ldots, a$ of length b. So the Vertex-set is

$$
V=\left\{v_{1}, \ldots, v_{a}, w_{1,1}, \ldots, w_{1, b-1}, w_{2,1}, \ldots w_{a, 1}, \ldots w_{a, b-1}\right\}
$$

and the edges are

$$
\begin{aligned}
E= & \left\{\left\{v_{i}, v_{i+1}\right\} \mid i=1, \ldots, a-1\right\} \cup\left\{\left\{v_{1}, v_{a}\right\}\right. \\
& \left.\cup\left(\bigcup_{i=1}^{a}\left(\left\{w_{i, j}, w_{i, j+1}\right\} \mid j=1, \ldots, b-2\right\} \cup\left\{\left\{v_{i}, w_{i, 1}\right\},\left\{v_{i}, w_{i, b-1}\right\}\right\}\right)\right) .
\end{aligned}
$$

Give a picture of $G_{a, b}$ and count the number of spanning trees.
(4) Let G_{n} be the the graph, which has $2 n$ vertices and is shown below.

Let A_{n} be the adjacency matrix of G_{n}. Find a recursion formula for $\operatorname{det}\left(A_{n}\right)$.

