(1) Let T(n) be the number of spanning trees of the graph, which has 2n vertices and is shown below.

Prove $T(n) = 4 \cdot T(n-1) - T(n-2)$ for all $n \ge 2$. How fast does T(n) grow for $n \to \infty$?

- (2) Let G = (V, E) be a simple graph. The *line graph* $\mathcal{L}(G)$ has vertex set E and two vertices $e, e' \in E$ of $\mathcal{L}(G)$ are connected if and only if they share an endpoint, i.e. if $e \cap e' \neq \emptyset$. A *Hamilton cycle* of a graph G is a cycle, visiting every vertex exactly once. Specify an algorithm which decides if $\mathcal{L}(G)$ has a Hamilton cycle in $\mathcal{O}(|V| + |E|)$ steps, i.e. the algorithm does only a number of steps which is (at most) linear in |V| + |E|.
- (3)
- (a) How many spanning trees does $K_{2,l}$ have? How many classes of isomorphic spanning trees does it have?
- (b) How many spanning trees and classes of isomorphic spanning trees does $K_{3,l}$ have?
- (c) Let $m \leq n$. How many spanning trees does $K_{m,n}$ have?
- (4) Let G be a graph and v a vector in the cycle space of G. Let M be the set of edges of G, whose corresponding entries in v are equal to 1. Characterize M.
- (5) Please hand in your solution of this exercise: A matroid M = (E, U) consist of a set E and a family $U \subseteq Pot(E), U \neq \emptyset$ of subsets of E, which fullfill the following properties:
 - $\emptyset \in \mathcal{U}$,
 - $A \subseteq B$ and $B \in \mathcal{U}$ imply $A \in \mathcal{U}$, and
 - for all $A, B \in \mathcal{U}$ with |A| < |B| exists $x \in B$, such that $A \cup \{x\} \in \mathcal{U}$ holds.

Let G = (V, E) be a graph and $U \subseteq Pot(E)$ be the set of cycle free sets of edges of G. Prove that (E, U) is a matroid.