3. Practice sheet for the lecture: Vorlesung über Graphentheorie/ Graphtheory (DS II)

Felsner, Heldt
27. Oktober

http://page.math.tu-berlin.de/~felsner/Lehre/dsII11.html

(a) Determine the switch graph of the degree-sequence ($3,3,3,2,1$).
(b) Consider the degree sequence $d=(1,1,1,1,1,1)$ and let G be the switch graph of d. How many vertices does G have? What is the degree-sequence of G ? Are C_{3} and / or C_{4} induced subgraphs of G ? ...
(a) Let G be a 3-regular graph. Prove $\kappa(G)=\kappa^{\prime}(G)$.
(b) Let G be a 4 -regular graph. Prove $\kappa^{\prime}(G)-\kappa(G) \leq 2$.
(c) Let \mathcal{Q}_{d} be the d dimensional hyper cube. Prove $\kappa\left(\mathcal{Q}_{d}\right)=\kappa^{\prime}\left(\mathcal{Q}_{d}\right)=d$.
(3) Let G be a graph and a, b distinct and non-adjacent vertices of G. Further, let X an Y be (a, b)-separators, i.e. a and b are in different maximal connected components of $G-X$ and $G-Y$. Let $X_{a} \subseteq G$ be the set of vertices in G, which are connected to a in $G-X$. Define X_{b}, Y_{a} and Y_{b} accordingly. Consider

$$
Z_{a}:=\left(X \cap Y_{a}\right) \cup(X \cap Y) \cup\left(Y \cap X_{a}\right)
$$

and

$$
Z_{b}:=\left(X \cap Y_{b}\right) \cup(X \cap Y) \cup\left(Y \cap X_{b}\right)
$$

and show that Z_{a} and Z_{b} separate a and b. Are Z_{a} and Z_{b} minimum separators if X and Y are minimum ones? Are Z_{a} and Z_{b} minimal separators if X and Y are?
(4) Prove the local directed vertex version of Menger's theorem: Let G be a directed graph and x, y distinct, non-adjacent vertices of G. Then the minimal size of a directed separator equals the maximal number of directed, vertex disjoint $x y$ - paths in G (A directed separator separates x from y, i.e. there is no path from x to y, but not necessarily y from x).
(5) Please hand in your solution of this exercise: Prove the global undirected edge version of Menger's theorem: Let G be a finite undirected graph and x, y distinct vertices of G. Then $\kappa^{\prime}(G)$ equals the minimum over all vertices $x \neq y$ over maximum number of pairwise edgedisjoint paths from x to y.
Hint: For $G=(V, E)$ consider the Graph $G^{\star}=\left(V^{\star}, E^{\star}\right)$ with vertex set $V^{\star}=V \cup E$ and edge set $E^{\star}=\{(v, e) \in V \times E \mid v \in e\} \cup\left\{\left.\left(e, e^{\prime}\right) \in\binom{E}{2} \right\rvert\, e \cap e^{\prime} \neq \emptyset\right\}$. To generate G^{\star} from G put a vertex on every edge and add additional edges in G^{\star} between any two new vertices, if the corresponding edges in G share an endpoint. Now deduce the undirected edge version of Menger for G from the undirected vertex version of Menger for G^{\star}.

