2. Practice sheet for the lecture: Vorlesung über Graphentheorie/ Graphtheory (DS II)

Felsner, Heldt
20. Oktober
http://page.math.tu-berlin.de/~felsner/Lehre/dsII11.html
(1) For which $n \in \mathbb{N}$ is there a Hamilton-path from $(0,0, \ldots, 0)$ to $(1,1, \ldots, 1)$ in the boolean lattice \mathcal{B}_{n} ?
(2)
(a) Does a 307-regular graph with 911 vertices exist?
(b) Does a 501-regular graph with 10432 vertices exist?
(c) Does a 100-regular graph with 175 vertices exist?
(the interested reader might to try to answer the implicit question For which pairs (n, k) is there a k-regular graph with n vertices?, or complete the picture for as many pairs as possible)
(a) Prove that $\left(d_{1}, \ldots, d_{n}\right)$ with $d_{i}>0$ for all $i=1, \ldots, n$ is the degree sequence of a tree if and only if $\sum_{i=1}^{n} d_{i}=2 n-2$ holds.
(b) Let $d_{1}<d_{2}<\ldots<d_{k}$ be natural numbers. Show that there exists a graph G with $d_{k}+1$ vertices, such that the set of degrees in G equals $\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$.
(a) Let $M=\left\{a_{1}, \ldots, a_{n}\right\} \subseteq \mathbb{N}$ be a finite set of natural numbers. Let $G_{M}=(M, E)$ be the (undirected) graph with vertices $a_{i} \in M$ for $i=1, \ldots, n$ and edges $\left\{a_{i}, a_{j}\right\} \in E \subseteq\binom{M}{2}$ for all a_{i}, a_{j} such that $a_{i} \mid a_{j}$ or $a_{j} \mid a_{i}$. Is there for every graph G a set M such that $G=G_{M}$?
(b) Let $M=\left\{a_{1}, \ldots, a_{n}\right\} \subseteq \mathbb{N}$ be a finite set of natural numbers. Let $H_{M}=(M, E)$ be the (undirected) graph with vertices $a_{i} \in M$ for $i=1, \ldots, n$ and edges $\left\{a_{i}, a_{j}\right\} \in E \subseteq\binom{M}{2}$ for all a_{i}, a_{j} with $\operatorname{gcd}\left(a_{i}, a_{j}\right)=1(\operatorname{gcd}=$ greatest common divisor $)$. Is there for every graph G a set M such that $G=H_{M}$?

