(1)

Stefan Felsner

- **a.** Let G be a comparability graph, show that G contains no odd cycle of length ≥ 5 as induced subgraph.
- **b.** Let G be a incomparability graph, show that G contains no odd cycle of length ≥ 5 as induced subgraph.
- (2) Characterize the down-set lattices of orders of width two.
- (3) Let G be a graph with a girth girth(G). Show that if $girth(G) > \chi(G)$, then G is a cover graph.
- (4) For each *m* construct a partial order P_m with $\binom{m+1}{2}$ elements such that if B_1, \ldots, B_k is a cover of P_m with the property that each B_i is a chain or an antichain, then $k \ge m$. (Later we will see that Greene-Kleitman Theory implies that every order with less than $\binom{m+1}{2}$ elements has such a cover with k < m.)
- (5) Prove that the following conditions are equivalent:
 - **a.** G is a comparability graph of a poset of dimension at most 2;
 - **b.** *G* is a containment graph of intervals on a line;
 - **c.** G is a permutation graph.
- (6) Let P be a poset and C be a chain in P. Prove that

 $\dim(P) \leqslant \dim(P - C) + 2.$

(7) Let M be a subset of maximal elements of a poset P. Let width $(P \setminus M) \leq w$. Show that

 $\dim(P) \leqslant w + 1.$