Übungsblatt "Graphs, Order, and Geometry"

(1) Show that every nonconstant function on the vertices of a connected graph has at least two poles.
(2) Prove the following: For a connected simple graph G, a nonempty set S of vertices of G and function $h_{0}: S \rightarrow \mathbb{R}$, there is a unique function $h: V \rightarrow \mathbb{R}$ extending h_{0} that is harmonic at each vertex of $V \backslash S$.
(3) Consider the random walk on a connected graph G and let S be a nonempty set of vertices of G and function $h_{0}: S \rightarrow \mathbb{R}$. For vertex v let a_{v} be the (random) vertex where a random walk starting in v first hits S. Show that the function $h(v)=\mathbf{E}\left(h_{0}\left(a_{v}\right)\right)$ is harmonic and extends h_{0}.
(4) Let G be a 2 -connected graph with vertices s and t. Show that there exists a (s, t) orientation of G, i.e., an acyclic orientation such that s is the unique source and t the unique sink of the orientation.
(5) Construct a planar graph G which has no representation by touching squares, i.e, the vertices are represented by squares in the plane so that the interiors of the squares are disjoint and two squares share a boundary point if and only if the corresponding vertices are adjacent.
(6) Let X be the set of points in the plane such that every triple of points of X can be covered by a triangle of area 1 . Prove that the convex hull of X can be covered by a triangle of area 4.
(7) (Kirchberger's Theorem) Let X be the set of points in the plane in general position. Suppose points in X are colored with red and blue such that for every four points there is a line separating points of different color. Prove that there exists a line separating the red and the blue points of X.
(8) Let Q be a union of axis parallel rectangles. Suppose for every two points $x, y \in Q$ there exists a point v, such that segments $x v$ and $y v$ are contained in Q. Prove that Q is a star-shaped polygon.

