Übungsblatt "Graphs, Order, and Geometry"

Stefan Felsner
(1) The Erdős-Szekeres lemma can be stated as follows: If $n=a b+1$ and x_{1}, \ldots, x_{n} is a sequence of n numbers, then the sequence contains a strictly increasing subsequence of $a+1$ terms or a weakly decreasing subsequence of $b+1$ terms.
Prove the lemma and think about generalizations.
(2) Describe an algorithm to find a maximum weight free set in a weighted binary tree, here a set of nodes is called free if no two of them are on a joint path to the root.
(3) A geometric graph is a graph given with a straight line drawing. A convex geometric graph has its vertices in convex position, e.g. as points on a circle. Show hat a convex geometric graph with n vertices and no three pairwise crossing edges has at most $4 n-10$ edges.
(4) Let G be a geometric graph with n vertices such that each edge is crossed by at most one other edge. How many edges can G possess?
(5) Find an constant factor approximation algorithm for intersection graphs of discs.
(6) Find an constant factor approximation algorithm for intersection graphs of translates of a fixed convex shape.

