Übungsblatt "Graphs, Order, and Geometry"

Stefan Felsner

- (1) Prove that the smallest size of a universe required to represent any *n*-vertex graph $(n \ge 4)$ as an intersection graph of family of sets from this universe is $\lfloor \frac{n^2}{4} \rfloor$. For a lower bound you should construct a *n*-vertex graph requiring such a large universe. Hint for an upper bound: try induction on *n* and use the fact that $\lfloor \frac{(n+2)^2}{4} \rfloor = \lfloor \frac{n^2}{4} \rfloor + n + 1$.
- (2) Let $\lambda_3(n)$ be the maximal length of a (n, 3) Davenport–Schinzel sequence, i.e., the maximal length of a sequence over an alphabet with n letters such that the sequence has no consecutive identical letters and no subsequence of type $\ldots a \ldots b \ldots a \ldots b \ldots a \ldots$ Prove the recurrence

$$\lambda_3(n) \leqslant \lambda_3(n-1) + \frac{\lambda_3(n)}{n} + 2$$

and the implication

$$\frac{\lambda_3(n)}{n} \leqslant \frac{\lambda_3(n-1)}{n-1} + \frac{2}{n-1} \leqslant 2(1 + \log_2(n)).$$

- (3) Let G = (V, E) be a graph with $\chi(G) > a \cdot b$ and let $G_1 = (V, E_1)$ and $G = (V, E_2)$ be subgraphs of G with $E_1 \cup E_2 = E$. Show that $\chi(G_1) > a$ or $\chi(G_2) > b$.
- (4) A shift graph of size n is a graph H_n such that $V(H) = \{(i, j) \mid 1 \leq i < j \leq n\}$ and (i, j), (k, l) are adjacent iff i < j = k < l. Prove that $\chi(H_n) = \Theta(\log n)$. Thus, give an argument for a lower and an upper bound. Hint for a lower bound: for any fixed coloring of H_n and every $1 \leq i \leq n$ consider the set C_i of colors used for vertices of the form $\{(i, j) \mid i < j\}$. Prove that $C_i \neq C_{i'}$ for $i \neq i'$.
- (5) Construct a graph which is not
 - a) an intersection graph of axis-aligned rectangles;
 - b) an intersection graph of segments.
- (6) Mimicking the construction of triangle-free segment graphs with high chromatic number (Pawlik et al.) show that for every $n \ge 1$ there is a triangle-free family \mathcal{F}_n of L-shapes (shapes consisting of a horizontal and a vertical segments sharing an endpoint) such that $\chi(\mathcal{F}_n) > n$.
- (7) Show that S_n , the triangle-free family of segments with high chromatic number constructed at the lecture, has an independent set of size $\frac{1}{4}|S_n|$.
- (8) The abstract graphs represented by the family S_n of segments are known as *Burling graphs*. Describe a recursive construction of Burling graphs.