Übungsblatt " Graphs, Order, and Geometry"

Stefan Felsner
(1) Prove that the smallest size of a universe required to represent any n-vertex graph $(n \geqslant 4)$ as an intersection graph of family of sets from this universe is $\left\lfloor\frac{n^{2}}{4}\right\rfloor$. For a lower bound you should construct a n-vertex graph requiring such a large universe. Hint for an upper bound: try induction on n and use the fact that $\left\lfloor\frac{(n+2)^{2}}{4}\right\rfloor=\left\lfloor\frac{n^{2}}{4}\right\rfloor+n+1$.
(2) Let $\lambda_{3}(n)$ be the maximal length of a $(n, 3)$ Davenport-Schinzel sequence, i.e., the maximal length of a sequence over an alphabet with n letters such that the sequence has no consecutive identical letters and no subsequence of type $\ldots a \ldots b \ldots a \ldots b \ldots a \ldots$. . Prove the recurrence

$$
\lambda_{3}(n) \leqslant \lambda_{3}(n-1)+\frac{\lambda_{3}(n)}{n}+2
$$

and the implication

$$
\frac{\lambda_{3}(n)}{n} \leqslant \frac{\lambda_{3}(n-1)}{n-1}+\frac{2}{n-1} \leqslant 2\left(1+\log _{2}(n)\right)
$$

(3) Let $G=(V, E)$ be a graph with $\chi(G)>a \cdot b$ and let $G_{1}=\left(V, E_{1}\right)$ and $G=\left(V, E_{2}\right)$ be subgraphs of G with $E_{1} \cup E_{2}=E$. Show that $\chi\left(G_{1}\right)>a$ or $\chi\left(G_{2}\right)>b$.
(4) A shift graph of size n is a graph H_{n} such that $V(H)=\{(i, j) \mid 1 \leqslant i<j \leqslant n\}$ and $(i, j),(k, l)$ are adjacent iff $i<j=k<l$. Prove that $\chi\left(H_{n}\right)=\Theta(\log n)$. Thus, give an argument for a lower and an upper bound. Hint for a lower bound: for any fixed coloring of H_{n} and every $1 \leqslant i \leqslant n$ consider the set C_{i} of colors used for vertices of the form $\{(i, j) \mid i<j\}$. Prove that $C_{i} \neq C_{i^{\prime}}$ for $i \neq i^{\prime}$.
(5) Construct a graph which is not
a) an intersection graph of axis-aligned rectangles;
b) an intersection graph of segments.
(6) Mimicking the construction of triangle-free segment graphs with high chromatic number (Pawlik et al.) show that for every $n \geqslant 1$ there is a triangle-free family \mathcal{F}_{n} of L-shapes (shapes consisting of a horizontal and a vertical segments sharing an endpoint) such that $\chi\left(\mathcal{F}_{n}\right)>n$.
(7) Show that \mathcal{S}_{n}, the triangle-free family of segments with high chromatic number constructed at the lecture, has an independent set of size $\frac{1}{4}\left|\mathcal{S}_{n}\right|$.
(8) The abstract graphs represented by the family \mathcal{S}_{n} of segments are known as Burling graphs. Describe a recursive construction of Burling graphs.

