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Figure 34. The refinement poset on regular subdivisions of the mother of all configuration.

Definition 118. The volume vector of a triangulation T of a point set P is the vector of RP

defined by

Φ(T ) :=

(

∑

p∈△∈T

vol(△)

)

p∈P

In other words, the coordinate corresponding to point p ∈ P is the area of the star of p in T . The
secondary polytope ΣPoly(P) of P is the convex hull of the volume vectors of all triangulations of P,

ΣPoly(P) := conv {Φ(T ) | T triangulation of P} .

For example, the secondary polytope of the mother of all example is represented in Figure 35.

Definition 119. The secondary cone of a subdivision S of a point set P is the polyhedral cone

C(S) :=
{

ω ∈ R
P
∣

∣ S refines S(P, ω)
}
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Figure 35. The secondary polytope of the mother of all example.

corresponding to all height functions whose lower convex hull projects to S. The secondary
fan ΣFan(P) of P is collection of the secondary cones of all subdivisions of P,

ΣFan(P) := {C(S) | S subdivision of P} .

It is a complete polyhedral fan.

Example 120. Consider the point configuration P = {(0, 0), (3, 0), (0, 3), (3, 3), (1, 1)} of Exam-
ple 114. The volume vectors of the four triangulations are given by:

(9, 9/2, 9/2, 9, 0) (9/2, 9, 9, 9/2, 0) (3, 15/2, 15/2, 9/2, 9/2) (3, 9/2, 9/2, 6, 9).

The projection of the secondary polytope ΣPoly(P) on the plane generated by the last two coordi-
nate vectors is represented in Figure 36 (left). We look at what height functions produce the nine
regular subdivisions of Figure 32. Without loss of generality (affine invariance), we restrict our
attention to the height functions ω : P → R with ω1 = ω2 = ω3 = 0. The nine regular subdivisions
of Figure 32 then correspond to the following inequalities:

(i) ω4 = ω5 = 0,
(ii) ω4 = 0, ω5 > 0,
(iii) ω4 > 0, ω5 = 0,
(iv) ω4 + 3ω5 = 0, ω5 < 0,
(v) ω4 < 0, ω4 − 3ω5 = 0,
(vi) ω4 < 0, ω4 − 3ω5 < 0,
(vii) ω4 > 0, ω5 > 0,
(viii) ω4 + 3ω5 > 0, ω5 < 0,
(ix) ω4 + 3ω5 < 0, ω4 − 3ω5 > 0.

The corresponding secondary fan ΣFan(P) is represented in Figure 36 (middle). Finally, the re-
finement poset of regular subdivisions of P is represented in Figure 36 (right).
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Figure 36. The secondary polytope (left), the secondary fan (middle), and the
poset of regular subdivisions (right) of the set {(0, 0), (3, 0), (0, 3), (3, 3), (1, 1)}.

Theorem 121 (Gelfand, Kapranov, and Zelevinsky [GKZ94]). Let P be a planar point set in
general position.

(i) The dimension of the secondary polytope ΣPoly(P) is |P| − 3.
(ii) The secondary fan ΣFan(P) is the inner normal fan of the secondary polytope ΣPoly(P).
(iii) The face lattice of the secondary polytope ΣPoly(P) is isomorphic to the refinement poset of

regular subdivisions of P.

Proof. We start with (i). The lower bound on dim(ΣPoly(P)) is obtained by induction on |P|.
It is clear when |P| = 3 since the secondary polytope is reduced to a single point. For |P| ≥ 4,
consider an arbitrary point p ∈ P. If p lies in the convex hull of Pr p, a triangulation T of P is
a triangulation of Pr p iff Φ(T )p = 0. Therefore,

ΣPoly(Pr p) = ΣPoly(P) ∩
{

x ∈ R
P
∣

∣ xp = 0
}

.

Similarly, if p is on the convex hull of P, we obtain that

ΣPoly(Pr p) = ΣPoly(P) ∩
{

x ∈ R
P
∣

∣ xp = vol(conv(P))− vol(conv(Pr p))
}

.

It immediately follows by induction that dim(ΣPoly(P)) ≥ |P|−3. To prove the reverse inequality,
we exhibit three independent linear relations satisfied by the volume vectors of the triangulations
of P. First, since a triangulation T of P decomposes the convex hull of P into triangles, we obtain:

vol(conv(P)) =
∑

△∈T

vol(△) =
∑

△∈T

∑

p∈△

vol(△)

3
=

1

3

∑

p∈P

∑

p∈△∈T

vol(△) =
1

3

∑

p∈P

Φ(T )p.

The other two linear relations are obtained from the center of mass cm(conv(P)) of the convex
hull of P:

vol(conv(P)) · cm(conv(P)) =
∑

△∈T

vol(△) · cm(△) =
∑

△∈T

vol(△) ·

(

1

3

∑

p∈△

p

)

=
1

3

∑

p∈P

Φ(T )p · p,

since the center of mass of a triangle pqr coincides with its vertex barycenter (p+q+ r)/3. Note
that this equality between two points in the plane gives two independent relations.

We now prove (ii). Consider a lifting function ω : P → R and a triangulation T of P. Let
fT,ω : R2 → R denote the piecewise linear map such that fT,ω(p) = ω(p) for p ∈ P, and which is
affine on each triangle of T . Then the volume below the surface defined by fT,ω is
∫

conv(P)

fT,ω(x) dx =
∑

△∈T

∫

△

fT,ω(x) dx =
∑

△∈T

vol(△)

3

∑

p∈△

ω(p) =
1

3

∑

p∈P

ω(p) ·
∑

p∈△∈T

vol(△) =
〈Φ(T )|ω〉

3
.
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It follows that for any lifting function ω : P → R and any triangulation T of P distinct from the
regular triangulation S(P, ω) induced by ω, we have

〈Φ(S(P, ω))|ω〉 < 〈Φ(T )|ω〉.

Said differently, for any regular triangulation T of P, the normal cone of Φ(T ) in ΣPoly(P) is the
secondary cone C(T ) of T . This achieves the proof of Point (ii).

Finally, Point (iii) is immediate from (ii) and the definition of the secondary fan. �

Exercice 122. Compute the volume vectors of all triangulations of the mother of all configuration.
What happens to the volume vectors of the two non-regular triangulations? What happens if we
slightly rotate the three outer vertices clockwise? (Hint: show that one of the two triangulations of
Figure 33 becomes regular while the other remains non-regular). Deduce that some triangulations
are non-regular even under small perturbations of their vertex sets.


