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Preface

At the Math department of TU Berlin I am responsible for the courses in the study
focus Discrete Structures (DS). The first course is Combinatorics, it is listed as a
basic course by the Berlin Mathematical School (BMS) and must therefore be taught
in English. The second course in the DS series is Graph Theory, depending on the
audience this course is in English or in German. In the winter 2013/14 students from
my course Graphentheorie converted their notes into a latex book with lecture notes.

In April 2021 a group of students started a project on overleaf aiming at a similar
latex book for the Combinatorics course held in the summer term of 2021. In the
order of their final contribution the students are Dario Cavallaro, Heiko Scholz, Leon
Ludwig, Melanie Reihl, and Matthias Vogt. Together with my PhD student Felix
Schröder who served as a teaching assistant for the course we took the chapters as
provided by the students and carefully edited them to get rid of errors, improve layout
and the structure of proofs, and add explanations. It took us until winter 2022 to
complete the task. The result is a book of 27 chapters and 185 pages which fully
covers the content of the course. The text will be valuable to those who attend a
combinatorics class at TU in the future. I believe that all those who contributed can be
proud on the achievement. My thanks go to Dario, Heiko, Leon, Melanie, and Matthias
for their initiative and commitment and to Felix for his support during the copyedit
phase.

Stefan Felsner
Berlin, 21/Dec./2022
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Combinatorics, TU Berlin, SoSe 2021

Lecturer: Stefan Felsner
Transcript: Melanie Reihl
Date: 2021/04/13

Lecture

1
Derangements

In our first lesson we will define derangements and learn some formulas for them,
which we will prove in this and subsequent lessons.

Definition 1.1 (Permutation). A permutation is a bijection π : X→ X for some finite X,
for example X = [n] := {1,2,3, . . . ,n}.

We let Sn denote the set of all permutations of [n].

From other courses we know that |Sn| = n!. The easiest way to write down permuta-
tions is in 2 lines:

n 1 2 3 4 5 6 7
π(n) 5 4 6 7 2 3 1

Table 1.1: 2-line notation: Since the first row is the same for every permutation, the second
row determines it uniquely, yielding 1-line notation.

There is a lot you can do with permutations. The Permutahedron is a polytope whose
vertices are exactly the permutations of Sn, their 1-line notation interpreted as vectors
in Rn. From a vertex we can go with an edge to neigbours by exchanging an adjacent
pair of numbers, i.e., by using an adjacent transposition.

1234
2134 1243

1324

2143

1423

143213423124

3142

4123

4132

3214

2314

2341

3241

3421
4321

4312

3412

4231

42132431

2413

Figure 1.1: The Permutahedron of S4

In this lecture, we will focus on permutations without fixed points:

Definition 1.2 (Fixed point). We say that x ∈ [n] is a fixed point of π ∈ Sn if π(x) = x.
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1. Derangements

Definition 1.3 (Derangement). A derangement is a permutation without a fixed point,
and d(n) is defined as the number of derangements in Sn

Example 1 (One-armed bandit). Imagine playing the following game with a machine:

Insert 1$ here

5 4 6 7 2 3 1
Unlucky! No fixed points this time...

JACKPOT: 7 $

Figure 1.2: One armed bandit game: You get 1$ for each fixed point of a permutation

Cost: You spend one dollar to the machine.

Benefit: The machine samples a permutation π uniformly at random and then gives
you one dollar for each fixed point of π.

Question: What is the expected value? Do you win or lose more money?

Every i ∈ [n] is a fixed point in (n − 1)! permutations. The total number of fixed
points therefore is: ∑n

i=1
(n− 1)! = n(n− 1)! = n!

Therefore the expected value is 0 dollar, which means that the game is fair.
P.R. Montmort proposed the following variant: You gain x dollar when no fixed

point is in the permutation. For which x is the game fair? If you know d(n), then you
can calculate x = n!

d(n) , so this was Montmort’s motivation for examining d(n).

Next we will state several relations on d(n), and dedicate the rest of this section to
prove them.

Theorem 1.4. ”What is d(n)”?

1. Look up encyclopedia of integer sequencesI and get numbers:
n 1 2 3 4 5 6 7 . . .
d(n) 0 1 2 9 44 265 1854 . . .

2. Recursion:

a) d(n) = (n− 1) · [d(n− 1) + d(n− 2)],

b) n! =
∑n
k=1

(n
k

)
d(k).

IThe On-Line Encyclopedia of Integer Sequences (OEIS) is a great website that gathers information
about any kind of integer sequences and a good first resource to look at.
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1. Derangements

3. Summation:
d(n) =

∑n
k=1

(n
k

)
(−1)n+kk!

4. Explicit:
d(n) = [n!

e ] = bn!
e + 1

2c.

5. Asymptotics:
d(n) ∼

√
2πn · nn

e(n+1).

6. Generating function:∑
n≥0

d(n)
n! z

n = e−z
1−z .

Proof. 2.a of d(n) = (n− 1)[d(n− 1) + d(n− 2)] by bijection:
For the proof, we use the cycle decomposition of the permutation:
Let π ∈ Sn without a fixed point, and let x,y ∈ N be such that π(n) = y and π(x) = n.

1

5

24

7
3

6

n 1 2 3 4 5 6 7

f (n) 5 4 6 7 2 3 1

Figure 1.3: Two line representation and cycle decomposition of π.

The cycle decomposition of π has a cycle, where n is one of the vertices. We will use a
proof by bijection that maps π to (x, π̃), where x ∈ [n−1] and π̃ is a derangement on
n− 1 or n− 2 elements. We have two cases, see Figure 1.4:

• 1st case x , y:
(left and middle of Figure 1.4).
We can delete n and get π̃ with π̃(i) = π(i) for every i ∈ [n− 1], i , x and π̃(x) = y,
since we have x , y it is no fixed point. Furthermore, we have to remember
x ∈ [n− 1] to know where to insert n for the reverse direction.

• 2nd case x = y:
(middle and right of Figure 1.4).
If we proceed like in the 1st case, we get π̃(x) = y = x, and so we would have a
fixed point (E). To solve this problem, we also delete x and our new π̃ is defined
in two steps: first we define a(i) = π(i) if π(i) < x and a(i) = π(i) − 1 if π(i) > x
second we let π̃(i) = a(i) for 0 < i < x, and π̃(i) = a(i + 1) for x ≤ i ≤ n − 2. This
corresponds to deleting the 2-cycle (x,n) and replacing each i > x by i − 1 in the
cycle representation of π. In the reverse direction we are given x ∈ [n− 1], hence
we know which vertex is connected to n and can go from π̃ to π.
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1. Derangements

9

6

8

5 7 5 7

6

8

3

1

4

23

2

4

1

1

2

64

3

5

Figure 1.4: The derangement on the left ist mapped with case 1 and n = 9 to the derangement
in the middle which in turn is mapped by case 2 with n = 8 and x = 3 to the derangement
on the right, now n = 6.

So we get

d(n) = (n− 1) ·( d(n− 1) + d(n− 2) )
x ∈ [n− 1] π̃ in the 1st case and 2nd case

Proof. 2.b) of n! =
∑n
k=1

(n
k

)
d(k) by bijection.

Let π be a permutation of [n]. We denote A := {x ∈ [n]|π(x) = x} and B = [n]\A, in other
words A is the set of fixed points and B contains no fixed point of π.
We define π̃ with π̃ : B→ B and π̃(x) = π(x). Thus, π̃ is a derangement on |B| numbers.

In total there are
( n
|A|

)
=

( n
|B|
)

possibilities where the fixed points are, π̃ has d(|B|)
possibilities. Summing over each possible number k of elements of B this results in:

|Sn| = n! =
n∑
k=1

(
n

k

)
d(k)
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Combinatorics, TU Berlin, SoSe 2021

Lecturer: Stefan Felsner
Transcript: Dario C.
Date: 2021/04/15

Lecture

2
Introductory Examples II

In the second lecture we continue to derive the already mentioned expressions and
relations for the number of derangements d(n) of Sn and finish by analysing another
combinatorial problem posed by Euler.

2.1 Derangements (continued)

Recall that the derangements of Sn are exactly the fixed-point free permutations. We write
d(n) for the number of derangements in Sn given n ∈ N. In the last lecture we have
seen the following relations and expressions for d(n):

d(n) = (n− 1)(d(n− 1) + d(n− 2)) , (2.1)

n! =
n∑
k=0

(
n

k

)
d(k) ←→ d(n) =

n∑
k=0

(
n

k

)
(−1)n+kk! (2.2)

With Theorem 1.4 we have already proven Equation (2.1) and the lefthand side of
Equation (2.2). We will continue by proving the equivalence Equation (2.2) which
follows immediately from the general inversion formula.

Proposition 2.1 (General Inversion Formula). Let g,f : N→ R be two functions, then
the following two relations are equivalent

(1) : g(n) =
n∑
k=0

(
n

k

)
(−1)kf (k), (2) : f (n) =

n∑
k=0

(
n

k

)
(−1)kg(k),

i.e. (1) holds true if and only if (2) holds true.

In order to prove Proposition 2.1 we will use another lemma. It is convenient to
introduce some simplifying notation: given a function g : N→ R and a finite set B we
write

g(B) := g(|B|).

This gives another formulation for the general inversion formula, which will be the
one that we prove:

g(B) =
∑
A⊆B

(−1)|A|f (A) ⇐⇒ f (B) =
∑
A⊆B

(−1)|A|g(A). (IF)
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2. Introductory Examples II

Lemma 2.2 (Fundamental lemma). Let B be any finite set, then

∑
A⊆B

(−1)|A| =

1, B = ∅
0, else.

Proof. If B = ∅ the equation is trivially satisfied since (−1)0 = 1, so assume B , ∅. Note
that we may as well prove that the number of odd subsets of B is equal to the number
of even subsets of B; that is what the lemma states after all. We will prove the latter by
giving a bijection between the odd and even subsets of B. To this extent fix b ∈ B and
write

A� b :=

A+ b, b < A

A− b, b ∈ A.

By construction A and A� b have cardinality of different parity, and clearly for every
fixed b, A→ A� b is a bijective function (since A = (A� b)� b)II. Now for every even
A ⊆ B there is exactly one odd subset A� b, giving a bijection between the even and
odd subsets of B and thus proving the lemma.

Remark. In the case that B is of odd parity we get a bijection already from the fact that(n
k

)
=

( n
n−k

)
and if k is even then n− k is odd, using a bijection between the k-subsets

and (n− k)-subsets.

We are now ready to prove Proposition 2.1.

Proof of Proposition 2.1. As mentioned above we will prove the theorem using the
alternate formulation given in Equation (IF), that is we prove

g(B) =
∑
A⊆B

(−1)|A|f (A)⇒ f (C) =
∑
B⊆C

(−1)|B|g(B)

which follows from a chain of equations, that we will break up into pieces and analyse
step by step.

∑
B⊆C

(−1)|B|g(B) =
∑
B⊆C

(−1)|B|
∑
A⊆B

(−1)|A|f (A)


=

∑
A⊆C

(−1)|A|f (A)
∑

B:A⊆B⊆C
(−1)|B|

, (1)

where the first equality follows using our assumption on g and (1) follows by keeping
track of the summed subsets. A fixed A ⊆ C is counted in (−1)|B|

∑
A⊆B(−1)|A|f (A) for

each B ⊆ C with A ⊆ B, so all in all we add up (−1)|A|f (A) a total of
∑
B:A⊆B⊆C(−1)|B|

IIThis shows that A→ A� b is self-inverse, i.e., an involution
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2.1 Derangements (continued)

times. If we can prove that (1) = f (C) we are done. To do so we continue by examining
that last term.

∑
B:A⊆B⊆C

(−1)|B| = (−1)|A|
∑

B′⊆C\A
(−1)|B

′ | =

(−1)|C|, ifA = C,
0, else.

The first equation follows from keeping track of the subsets we sum over, using that
for fixed A ⊆ B we get (−1)|B| = (−1)|A|(−1)|B\A| and switching to B′ := B \A ⊆ C \A as
the sum’s index. The last equation follows using Lemma 2.2.

Finally plugging our results into (1) we conclude that

(1) =
∑
A⊆C

(−1)|A|f (A)
∑

B:A⊆B⊆C
(−1)|B|

 = 0 + . . .+ 0 + (−1)|C|f (C)(−1)|C| = f (C),

and hence the proof.

Using part (2b) of Theorem 1.4 (that is the left hand side of Equation (2.2)) we can
deduce part (3) of Theorem 1.4. For convenience we state it here again as a corollary.

Corollary 2.3. The number of derangements d(n) on Sn satisfies

d(n) =
n∑
k=0

(
n

k

)
(−1)n+kk!.

Next we continue to establish the explicit and asymptotical relations for d(n) that
were mentioned in Theorem 1.4 (4,5), that is

d(n) =
[n!
e

]
and d(n) ∼

√
2πn

nn

en+1 .

Plugging
(n
k

)
= n!
k!(n−k)! into our expression Equation (2.2) for d(n) we get

d(n) =
n∑
k=0

(
n

k

)
(−1)n+kk! = n!

n∑
k=0

(−1)n+k

(n− k)!
= n!

n∑
k=0

(−1)n−k

(n− k)!

= n!
n∑
k=0

(−1)k

k!
=−→ n!e−1,

where the third equation follows since n+ k and n− k have the same parity. One can
now easily show that d(n) =

[
n!
e

]
using the known fast convergence behavior of the

exponential series. The asymptotic relation now follows from Stirling’s formula for
the asymptotic behaviour of the factorial, which we will not prove here:

7



2. Introductory Examples II

n! ∼
√

2πn
(n
e

)n
⇒ d(n) ∼

√
2πn

nn

en+1

The last relation on d(n) that we will prove (Theorem 1.4 (6)) regards its generating
function

∑∞
k=0

d(n)
n! z

n.

Proposition 2.4. The exponential generating function induced by d(n) satisfies

∞∑
n=0

d(n)
n!

zn =
e−z

1− z
.

Proof. Let D(z) :=
∑∞
n=0

d(n)
n! z

n be the generating function. We can differentiate it
yielding

D ′(z) =
∞∑
n=1

d(n)
(n− 1)!

zn−1 =
∑
n=0

d(n+ 1)
n!

zn,

where the latter equality comes from an index-shift. Using a trick that turns out to be
very effective we find

(1− z)D ′(z) = (1− z)
∞∑
n=0

d(n+ 1)
n!

zn

=
∞∑
n=0

d(n+ 1)
n!

zn − d(n+ 1)
n!

zn+1

=
d(1)

1
z0 +

∞∑
n=1

(
d(n+ 1)
n!

− d(n)
(n− 1)!

)
zn

= 0 +
∞∑
n=1

(
d(n+ 1)
n!

− d(n)
(n− 1)!

)
zn. (1)

Recalling the recursion formula Equation (2.1) for d(n) we get

d(n+ 1)
n!

=
d(n)

(n− 1)!
+
d(n− 1)
(n− 1)!

.

Plugging this back into (1) we find

(1) =
∞∑
n=1

d(n− 1)
(n− 1)!

zn = z
∞∑
n=1

d(n− 1)
(n− 1)!

zn−1 = z
∞∑
n=0

d(n)
n!

zn = zD(z).

All in all this proves that D(z) satisfies the differential equation

(1− z)D ′(z) = zD(z),

where defined. It is a known fact that D(z) = e−z
1−z is the unique solution of this equation

with start value D(0) = 1, concluding the proof.
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2.2 Euler’s officers problem

2.2 Euler’s officers problem

The following problem was posed by Euler around 1782 and conjectured to be impos-
sible.

Euler’s officer problem

Input: we are given 36 officers of 6 ranks coming from 6 different countries,
such that each pair of country/rank is represented exactly once.

Question: can we place them in a table of 6 rows and 6 columns, such that every
row and every column contains each country and each rank?

In 1900, Tarry proved that this problem is indeed not solvable. The question
becomes more interesting when leaving the number of officers variable, that is for
k ∈ N we formulate the problem as

General officer problem

Input: we are given k2 officers of k ranks coming from k different countries,
such that each pair of country/rank is represented exactly once.

Question: Can we place them in a table of k rows and k columns, such that every
row and every column contains each country and each rank?

Figure 2.1: The officers and how to make orthogonal latin squares out of them: the rank is
shown by the form, the countries are distinguished by color

Euler conjectured that this problem is not solvable for k ≡ 2 mod 4. This was however
disproven in 1960 by Bose, Parker and Shrikhande. To state the theorem we first
develop definitions that transform our problem into mathematical language:

Definition 2.5 (Latin Square). A latin square of order n is a filling of an n×n table with
elements of [n] such that each row and each column is a permutation σ ∈ Sn.

Latin squares give exactly the different possible placements for the countries or
ranks.

9



2. Introductory Examples II

Definition 2.6 (Orthogonal latin squares). Two latin squares L1,L2 are said to be
orthogonal if each of the n2 pairs (i, j) ∈ [n]2 appears in a cell of the tables.

What we mean here by being in a cell of the tables is that the two latin squares L1,L2
ought to be seen as fillings of the same table, so as an entry of the table we get a pair
of elements, one from each latin square.

One easily sees that pairs of orthogonal latin squares are solutions to our previously
defined officer problem.

Theorem 2.7 (Bose, Parker, Shrikhande, 1960). For every k ∈ N with k , 2,6 there is a
pair of orthogonal latin squares, and thus a solution to the officer problem.

We will not prove this theorem but a weaker version dealing only with odd k. To do
this (although you might not see the connection yet) we can use the following algebraic
lemma.

Lemma 2.8. Let (G,�) be a group of odd order. Then x 7→ x2 is a bijection, i.e. we have
unique square roots.

Proof. Let z ∈ G. Since the group has odd order, there is a k ∈ N such that z2k+1 = eG.
This implies that (zk+1)2 = z2k+2 = z, proving that every z ∈ G can be written as a square.
Thus z 7→ z2 maps G to G surjectively. Since G is finite, it is even a bijection.

We are now ready to prove the theorem for odd n.

Theorem 2.9. For odd n ∈ N there is a pair of orthogonal latin squares.

Proof. Let (G,�) be any group of odd order n ∈ 2N+ 1. Let the n×n table be indexed
by the elements of G and define two maps (i.e. fillings of the n×n table)

L1(g,h) := g � h, L2(g,h) := g−1 � h.

We will prove that L1,L2 are orthogonal latin squares hence for each odd n ∈ N there
is an instance of orthogonal latin squares because there is a group of order n.

1 L1 and L2 are latin squares. For every a ∈ G the maps g 7→ a� g and g 7→ g � a
and g 7→ a−1 � g as well as g 7→ g−1 � a are bijections on G. This yields the claim,
since then each columns and rows (given by L1(a, ·),L1(·, a),L2(a, ·) and L2(·, a))
are indeed permutations.

2 L1 and L2 are orthogonal. This follows from the previous lemma. We will show
that for any (a,b) ∈ G2 there are g,h ∈ G such that

L1(g,h) = a = g � h and L2(g,h) = b = g−1 � h.

Having proven this we see that any pair (a,b) ∈ G2 is represented in a cell of the
tables filled by L1 and L2 (in the cell (g,h)).

10



2.2 Euler’s officers problem

To see that the claim holds, let g := (a� b−1)k+1, where 2k + 1 is the order of the
group G. Using Lemma 2.8 this yields g2 = a� b−1.

It remains to find an h satisfying the following two equations:

a = g � h and b = g−1 � h
⇐⇒ g−1 � a = h and g � b = h.

This amounts to verifying that

g−1 � a = g � b
⇐⇒ a� b−1 = g2,

which we already know to hold, so we can find the desired h by setting it to be
h = g−1 � a proving this last part.

Having thought about orthogonal latin squares it is natural to ask whether there are
sometimes more than 2 pairwise orthogonal latin squares, and if so, how many?

Definition 2.10 (Mutually orthogonal latin squares). Let L1, . . . ,Lk be latin squares of
order n ∈ N for some k ∈ N. They are MOLS (mutually orthogonal latin squares) of order
n if every pair Li ,Lj with i , j is orthogonal.

Proposition 2.11. For every n ∈ N the number of latin squares in a MOLS of order n is at
most n− 1.

Proof. Assume that L1, . . . ,Lk are MOLS. The first thing we claim, is that by permuting
the entries of Li by the same πi ∈ Sn we still get a latin square Lπii and the latin squares
Lπ1

1 , . . . ,L
πk
k are again MOLS.

1. The fact that Lπii is again a latin square follows immediately from the fact that
the composition of two permutations is a permutation.

2. The fact that Lπii and L
πj
j are still mutually orthogonal follows from permutations

being bijections: let (`,m) ∈ [n]2 be any pair. Since permutations are bijections,
there are `′,m′ ∈ [n] such that πi(`′) = ` and πj(m′) = m. Then since Li ,Lj are
orthogonal we have (`′,m′) as an entry of the n×n table implying that (`,m) is in
the table given by the squares Lπii and L

πj
j . Since (`,m) ∈ [n]2 was arbitrary we

are done.

Thus (after normalising via the right permutations π1, . . . ,πk) we may assume that
L1, . . . ,Lk have (1,2, . . . ,n) as a first row.

We now claim that by setting

ai := Li(2,1), for all i ∈ {1, . . . , k}

11



2. Introductory Examples II

we get ai , 1, for all i
ai , aj , for i , j.

(?)

Assuming (?), this then implies that ai ∈ [n] \ {1} so by the orthogonality assumption
we get n − 1 distinct possibilities for ai . If k ≥ n then (by the pigeonhole principle)
we find i, j such that ai = aj so Li ,Lj cannot be orthogonal, since then (ai , aj) = (ai , ai)
appears twice in the table (the first time comes from their first rows being identical).

So we are left with proving (?). This follows easily from the definition of latin
squares and orthogonality: ai cannot be 1 as the first column already contains a 1 and
must be a permutation; ai , aj as discussed previously since otherwise (ai , ai) would be
twice in the table but we need n2 many different pairs in n2 many cells so no doubles
are allowed.

We conclude this lecture with an application to geometry linking projective planes
over finite fields to MOLS. Recall that a projective plane of order n is a collection of
n2 +n+ 1 points and n2 +n+ 1 lines such that

1. each line contains exactly n+ 1 points.

2. each point lies on exactly n+ 1 lines.

3. any two points lie on a common line.

4. any two lines cross in a single point.

Figure 2.2: The projective plane of order 2, it is known as the Fano-plane

Theorem 2.12. Let n ∈ N be fixed, then there is a MOLS of (n− 1) squares of order n if and
only if there is a projective plane of order n.

Proof. Exercise. Hint: Given a MOLS of n − 1 squares, add two squares, one with
constant rows and one with constant columns to make it n+ 1 squares.
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3
Basic Counting

3.1 Binomial coefficients

Today, we are starting with the basics of counting. A lot of the following rules are
quite obvious but it is important to realize that they are sitting in the background of
almost every single tool in combinatorics.

Theorem 3.1. Let A,B be sets. Then the following rules hold:

A,B finite and disjoint =⇒ |A∪B| = |A|+ |B| (Rule of sum)

A,B finite =⇒ |A×B| = |A| · |B| (Rule of product)

A,B finite =⇒ |AB| = |A||B| (Rule of componentiation)

There exists a bijection f : A→ B =⇒ |A| = |B| (Rule of bijection)

where AB := {f | f : B→ A}.

Proof. (Exercise)

Definition 3.2 (Binomial Coefficient). We write
(n
k

)
for the number of k-element subsets

(k-subsets) of an n-element set. We set this to 0 if k < 0 or k > n.

Proposition 3.3. It holds that (
n

k

)
=

n!
k!(n− k)!

for all n,k ∈ N with k ≤ n.

For the proof, we will use the k-profiles of a permutation:

Definition 3.4 (k-profile). For a given permutation π = (π1, . . . ,πn) ∈ Sn, the k-profile
of π is a vector p(π) = (b1, . . . , bn) ∈ {0,1}n where

bi =

1, if πi ≤ k
0, else.

So it is a boolean vector with k many entries equal to 1.

13



3. Basic Counting

Proof of Proposition 3.3. In many proofs, instead of considering an arbitrary finite set
X = {x1, . . . ,xn}, we will just consider [n] := {1, . . . ,n} for some n ∈ N. This is without loss
of generality, because if X , [n], we can just use the bijection [n]→ X, i 7→ xi where
i ∈ [n] to prove our claim.

So let us consider [n] and the k-profile mapping

p : Sn→ Bnk := {b ∈ {0,1}n |
∑n
i=1 bi = k}, (π1, . . . ,πn) 7→ (b1, . . . , bn),

mapping π to its k-profile. This mapping is by no means injective, since two different
permutations can have the same k-profile. However it is surjective on the boolean
vectors which have k entries equal to one. So let us look at the pre-image of such a
boolean vector. If b ∈ Bnk , it holds that∣∣∣p−1(b1, . . . , bn)

∣∣∣ = k!(n− k)!.

This is because, for a given permutation π ∈ Sn, its k-profile (b1, . . . , bn) is invariant
when we permute

• the entries πi where bi = 1, which gives k! new permutations.

• the entries πi where bi = 0, which gives (n− k)! new permutations.

So ultimately, we get k!(n− k)! different permutations that have the same k-profile.
Moreover, we can write Sn =

⋃̇
b∈Bnk

p−1(b). Also note that |Bnk | =
(n
k

)
, since it is the

number of possible choices to choose k of the 1 entries in an n-vector.
Ultimately, with the rule of sum, we get

n! = |Sn| =

∣∣∣∣∣∣∣∣
⋃̇
b∈Bnk

p−1(b)

∣∣∣∣∣∣∣∣ = (n− k)!k! + · · ·+ (n− k)!k!︸                          ︷︷                          ︸
(nk) summands

=
(
n

k

)
(n− k)!k!.

For an alternative motivation of the binomial coefficient, consider [1].
Now let us prove some more properties of the binomial coefficient.

Theorem 3.5. For all n,m,k ∈ N, the following identities for binomial coefficients hold.
Identity 1 is the recursion, 3 is symmetry and 5 is the Vandermonde identity.

1.
(
n

k

)
=

(
n− 1
k

)
+
(
n− 1
k − 1

)
2.

(
n

k

)
· k = n ·

(
n− 1
k − 1

)
3.

(
n

k

)
=

(
n

n− k

)

4.
(
n

m

)(
m

k

)
=

(
n

k

)(
n− k
m− k

)

5.
k∑
l=0

(
n

l

)(
m

k − l

)
=

(
n+m
k

)

6.
m∑
k=0

(
n+ k
k

)
=

(
n+m+ 1

m

)

14



3.1 Binomial coefficients

Proof of 1. Let A be the set of k-subsets of [n].
Fix x ∈ [n].
Define Ax := {A′ ∈ A | x < A′} and Ax := {A′ ∈ A | x ∈ A′}

• It holds that |Ax| =
(n−1
k

)
because for each A′ ∈ Ax, we have n−1 =

∣∣∣[n]−x
∣∣∣ elements

left to choose from for our k-subset.

We also get |Ax| =
(n−1
k−1

)
because for each subset A′ ∈ Ax, we can choose from n− 1

elements which k − 1 elements other than x we want to have in our subset.

• Moreover, it holds that A = Ax ∪̇Ax.

Ultimately, we conclude with the rule of sum that(
n

k

)
= |A| = |Ax|+ |Ax| =

(
n− 1
k

)
+
(
n− 1
k − 1

)
.

Based on this recursion, we can arrange the binomial coefficients in Pascal’s Triangle
where any entry is the sum of the two entries directly above it:

(0
0
)(1

0
) (1

1
)(2

0
) (2

1
) (2

2
)

...(n−1
k−1

) (n−1
k

)
+(n
k

)
...

=

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

...

Figure 3.1: Pascal’s Triangle

Proof of 2. We prove this using bijection.
Let A be a k-subset of [n] and let a ∈ A. Then there are

(n
k

)
possibilities to choose A

and k possibilities to choose a.
On the other hand, let A′ be a (k − 1)-subset of [n] − a. Likewise, there are

(n−1
k−1

)
possibilities to choose A′ but there are also n possible values for a.

Then we have the bijection

(A
↑

k subset
of [n]

, a)
(A′ ,a)=(A−a,a)
←−−−−−−−−−−→ (A

↑
(k − 1)-subset

of [n]− a

′, a).
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3. Basic Counting

Proof of 3. We prove this using bijection.
Let A be a k-subset of [n].
Then its complement Ac is an (n− k) subset of [n].
So with the map A 7→ Ac, we have a bijection between the k-subsets and the (n− k)-

subsets of [n], which proves our result.

Proof of 4. We prove this using bijection.
For the left hand side, we define three sets

size n
↓
A ⊇

size m
↓
B ⊇

size k
↓
C.

For choosing these sets we have
(n
m

)(m
k

)
possibilities.

For the right hand side, we define the set B′ of size m− k and let

size n−k︷︸︸︷
A−C ⊇

size m− k
↓
B′

For choosing B′, we have
(n−k
m−k

)
possibilities.

Finally, we have the bijection

(B,C)
B=C+B′←−−−−−→ (C,B′)

which means the number of possibilities is equal, so we get

(
n

m

)(
m

k

)
=

(
n

k

)(
n− k
m− k

)
.

Proof of 5. An (n+m)−element set can be partitioned into an n-element set and an m
element set.

If we take a k-subset of our (n+m)-element set, this subset can thus also be parti-
tioned into subsets

{x1, . . . ,xl}︸     ︷︷     ︸
⊆ size n set

∪̇ {xl+1, . . . ,xk}︸        ︷︷        ︸
⊆ size m set

.

as shown in Figure 3.2.
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3.1 Binomial coefficients

-element set

-subset -subset

-subset, -subset

-subset

 

Figure 3.2: Partitioning our k-subset.

We notice that

1. There are multiple possibilities of how our set could be partitioned: one possibil-
ity for each l = 0, . . . , k.

2. There are
(n
l

)
possibilities for the contents of the l-subset

and
( m
k−l

)
possibilities for contents of the (k − l)-subset.

Ultimately, we conclude that (
n+m
k

)
=

k∑
l=0

(
n

l

)(
m

k − l

)
.

Proof of 6. Consider the boolean Vectors of length n+m+ 1 with m entries equal to 1,
the other n+ 1 entries are 0. These form a set we call B.

We want B = B0 ∪̇B1 ∪̇ . . .Bn for some sequence of Bk. For this we choose

Bk := {b ∈ B | b = (

n+m+1︷                    ︸︸                    ︷
b1, . . . , bn+k ,0,1, . . . ,1︸ ︷︷ ︸

m−k

)}.

By definition, each boolean vector is in a unique Bk depending on its suffix. For b ∈ Bk,
we especially know that b hasm−k entries equal to 1. Thus, there must still be k entries
equal to 1 among (b1, . . . , bn+k). For this, there are

(n+k
k

)
possibilities, so |Bk | =

(n+k
k

)
.

By the rule of the sum, we finally get(
n+m+ 1

m

)
= |B| = |B0|+ |B1|+ · · ·+ |Bn| =

n∑
k=0

(
n+ k
k

)
.
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3.2 Extended binomial coefficients

Definition 3.6 (Falling factorials). We write (r)k := r(r − 1)(r − 2) · · · (r − k + 1) for the
k-th falling factorial of r, where r ∈ N or r ∈ C and 1 ≤ k ≤ r. Notably, (r)r = r! so this is
a generalization of factorials.

With falling factorials, we can rewrite the binomial coefficient as(
n

k

)
=

n!
(n− k)!

· 1
k!

=
(n)k
k!
.

Further, (r)k can be viewed as a polynomial with the variable r. It even makes sense
for r ∈ C. Thus, our rewritten binomial coefficient also makes sense for n ∈ C and
k ∈ N.

Example 2. We have(
−r
k

)
=

(−r)(−r − 1) · · · (−r − k + 1)
k!

= (−1)k
(r + k − 1) · · · (r + 1)(r)

k!
= (−1)k

(
r + k − 1

k

)
.

An interesting special case is (
−1
k

)
= (−1)k .

3.2.1 Extending identities

Let x ∈ C. Let us see if we can extend the previously proven identities to the complex
numbers:

1.
(
x

k

)
=

(
x − 1
k

)
+
(
x − 1
k − 1

)
(3)

2.
(
x

k

)
· k = x ·

(
x − 1
k − 1

)
(3)

3.
(
x

k

)
=

(
x

x − k

)
(7)

4.
(
x

m

)(
m

k

)
=

(
x

k

)(
x − k
m− k

)
(3)

5.
k∑
l=0

(
x

l

)(
y

k − l

)
=

(
x+ y
k

)
(3)

6.
m∑
k=0

(
x+ k
k

)
=

(
x+m+ 1

m

)
(3)

Identity 3 only makes sense if (x − k) ∈ N, so it is not extendable.
Let us consider Identity 4. The two terms can be seen as polynomials with variable

x ∈ C. Both polynomials have rational coefficients and degree m, which we can see
with deg

(x
k

)
= k for all k ∈ N with 1 ≤ k ≤ x. Because they both have degree m, it

suffices to show that they agree for at least m distinct points (i.e. they have the same
value in at least m distinct points) to show that they are the same polynomials. But
we already know they agree for all x ∈ N, so surely for at least m points. Thus the two
terms must indeed be equal as polynomials in x ∈ C.
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3.2 Extended binomial coefficients

Likewise, we can see that both sides of the Identities 1 and 2 have degree k and that
both sides of Identity 6 have degree m. With the same criterion as above, we conclude
that these identities are extendable over the complex numbers. This proof technique
is commonly referred to as polynomial extension.

For the Vandermonde Identity (5.), we cannot use our previous technique as we now
have a polynomial in two variables x,y ∈ C. But for this case, we also have an almost
as simple criterion that we will formulate as a proposition.

Proposition 3.7. Let p,q ∈ K[x,y] be polynomials over some field K in the variables x
and y. Further, let degp, degq ≤m for some m ∈ N.

Then if p,q agree on S × T with S,T ⊆ K and |S | = |T | =m+ 1, it follows that p = q.

Proof. Let S = {s0, . . . , sm} ⊆ K and T = {t0, . . . , tm} ⊆ K .
Further, let V = Span{xkyl | 0 ≤ l,k ≤m}.
Then V is a subvectorspace of K[x,y] with dimension (m+ 1)2. This is because xkyl

for 0 ≤ l,k ≤m build a basis. We also know that p,q ∈ V because their degree is at most
m. It would be helpful to have another basis for V to express p,q.

For this, we consider the polynomials pkl with the property

pkl(si , tj) =

1, (i, j) = (k, l)
0, otherwise.

where 0 ≤ i, j,k, l ≤m. It holds that

• Our polynomials pkl must be of the form

pkl(x,y) =
∏
i,k

(x − si)
∏
j,l

(y − tj).

and by multiplying this out, we get pkl ∈ V .

• Moreover, there are (m+ 1)2 = dimV of these pkl in total.

Ultimately, if we can show their linear independence, {pkl | 0 ≤ k, l,≤m} would form a
basis of V .

So let us assume ∑
0≤k,l≤m

µkl · pkl(x,y) = 0

for some µij ∈ K . We want to show that all µij = 0. If we evaluate our polynomials at
(si , tj), each polynomial evaluates to 0, except for pij , which evaluates to 1. Thus we
have

0 =
∑

0≤k,l≤m
µkl · pkl(si , tj) = µij · pij(si , tj)︸   ︷︷   ︸

= 1

= µij ,

which shows the linear independence.
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3. Basic Counting

Now we know that {pkl | 0 ≤ k, l,≤ m} is a basis of V , which means we can express
our p and q as a linear combination of our pkl polynomials. But to show that p = q, we
will consider the polynomial p − q instead (which is also in V since V is a vector space)
and show that it is 0.

It holds that
p − q =

∑
0≤k,l≤m

λklpkl .

for some λij ∈ K . Moreover, we know that p and q agree on S × T . So we can evaluate
them at all (si , tj) ∈ S × T and ultimately obtain

0 = p(si , tj)− q(si , tj) = λij pij︸︷︷︸
= 1

= λij

Thus λij = 0 for all 0 ≤ i, j ≤m and we get

p − q =
∑

0≤k,l≤m
λkl︸︷︷︸
= 0

pkl = 0.

So we conclude that p = q.

Corollary 3.8. Vandermonde’s identity

k∑
l=0

(
x

l

)(
y

k − l

)
=

(
x+ y
k

)
holds for all (x,y) ∈ C.

Proof. We obtain this with the previous proposition since we know that Vandermonde’s
identity holds for all x,y ∈ N.

We can also rewrite the Vandermonde’s identity with falling factorials. It holds that

(x+ y)k
k!

=
(
x+ y
k

)
=

k∑
l=0

(
x

l

)(
y

k − l

)
=

k∑
l=0

1
l!
· 1

(k − l)!
· (x)l · (y)k−l ,

so multiplying by k! we get

(x+ y)k =
k∑
l=0

(
k

l

)
(x)l(y)k−l .

This is a nice identity for falling factorials and surprisingly similar to the binomial
theorem.
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Theorem 3.9 (Binomial theorem). It holds that

(x+ y)k =
k∑
l=0

(
k

l

)
xlyk−l

for all x,y ∈ R, k ∈ N.

Typically, the binomial theorem is proven as an exercise using induction. But here
are two nicer combinatorial proofs.

Proof 1 of Theorem 3.9. For the left hand side, we have

(x+ y)k =

k factors︷                      ︸︸                      ︷
(x+ y)(x+ y) · · · (x+ y)

We will now expand this by multiplying out all the terms together. While doing so, we
choose for each (x + y) term whether we multiply out using x or y. Say we choose x
during this expansion exactly k times (and y the remaining n − k times). Then the
resulting term after this specific expansion will be of the form xkyn−k. But there are

(n
k

)
possibilities to choose at which (x+ y) term we choose the x variable instead of y. So
our term xkyn−k is actually summed

(n
k

)
times, resulting in the term

(n
k

)
xkyn−k when

multiplying out by choosing x exactly k times. Summing over all possibilities for k,
we get

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k .

Proof 2 of Theorem 3.9. For finite sets X, Y and K , we can find a bijection

(X ∪Y )K
bijection
←−−−−−→

⋃̇
L⊆K

(
XL ×Y K\L

)
because for every map f : K → (X ∪ Y ), there is a subset L := f −1(X) ⊆ K that it
maps to X such that the rest L \K maps to Y . So for a given map, we account for all
possibilities of L ⊆ K and then consider all possible pairs of maps L→ X and K \L→ Y ,
where a given pair uniquely determines f .

If we take |X | = a, |Y | = b, |K | = k, with our basic rules of counting this yields

(a+ b)k =
k∑
l=0

(
k

l

)
albk−l .

which is the binomial theorem for a,b ∈ N. Since the polynomials agree on sufficiently
many integers, with Proposition 3.7, the result also holds over the reals.
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3. Basic Counting

3.3 Counting related to permutations

A permutation π ∈ Sn can be expressed in multiple ways, as seen in Table 3.2.

Two-line notation One-line notation Cycle notation(
1 2 3 4 5 6 7 8
5 4 7 2 3 6 8 1

)
(5 4 7 2 3 6 8 1) (4 2)(6)(8 1 5 3 7)

Table 3.2: Different Representations of an example permutation

The cycle notation stems from considering the cycles in the permutation. For our
example, this looks as in Figure 3.3.

1

5
3

7
8

42 6

Figure 3.3: Cycles in our permutation

The cycle notation is not unique; the order of the cycles in the notation is arbitrary,
as is which of the numbers in a cycle is the first one. As a convention, we make the
notation unique by

• starting each cycle with its largest number (the cycle leader), as well as
• sorting the cycles by their first entry ascending.

With this convention, we can even leave out the parentheses in the cycle notation. But
the cycles can still be uniquely identified, because the cycle leaders are the left-to-right
maxima, that is, they are larger than all numbers left of them. So the permutation can
be uniquely identified as well:

(42)(6)(81537)  42681537 (3.3)

The underlined elements are the left-to-right maxima.
Let us now derive some statistics about the cycle structure of a given permutation.

Definition 3.10 (Cycle properties of a permutation). Let π ∈ Sn. We write

• ci(π) ∈ N for the number of cycles of length i in π.

• type(π) := (c1(π), . . . , cn(π)) ∈ Nn for the type of π.

• c(π) :=
∑n
i=1 ci(π) for the number of cycles of π.
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Proposition 3.11. For c = (c1, . . . , cn) ∈ Nn with
∑n
k=1 k · ck = n, there are

n!
1c1 · c1! · 2c2 · c2! · · · · · ncn · cn!

permutations of type c.

Proof. We define
f : Sn→ Sn, π 7→ f (π)

where f (π) is a permutation of type c = (c1, . . . , cn) ∈ Nn. Let us consider an example to
see how this map can be defined.
Example 3. Let c = (1,2,1,0, . . . ,0), then the size of permutation π is n = 1+2 ·2+1 ·3 = 8.
We interpret π as a word (one-line notation) and add parentheses according to c to get
a permutation in cycle notation:

π = (3 7 1 5 4 6 8 2) 7→ f (π) = (3)(7 1)(5 4)(6 8 2)

Now f produces every permutation π′ of type c, but it is not injective. But we can ask
ourselves “How many π does f map to π′?” . The cycle notation is invariant under

1. permutation of cycles and the
2. choice of the first element for each cycle.

For the former, we have to keep in mind that f only maps to cycle notations with
increasing size of cycles, so we can only permute cycles of the same length. If we apply
these permutations to π while keeping f (π) invariant, from 1 and 2, we get

∏n
k=0 ck!

and
∏n
k=0 k

ck possible pre-images under f respectively. So if type(π′) = c, ultimately

|f −1(π′)| =
n∏
k=0

kckck!,

so all of these pre-images have the same size, which only depends on c. And the
number m of permutations of type c which we are looking for, is the same as the
number of pre-images under f of our type c permutations. Since f hits all type c
permutations, their pre-images also partition Sn. Thus

n! = |Sn| =

∣∣∣∣∣∣∣∣
⋃̇
π′∈Sn

f −1(π′)

∣∣∣∣∣∣∣∣ =m ·
n∏
k=0

kckck!,

and we conclude that
m =

n!∏n
k=0 k

ckck!
.
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Lecture

4
Basic Counting II

4.1 Counting cycles of permutations (continued)

We continue on the topic of counting cycles of permutations and therefore let c(n,k)B
#(permutations in Sn with k cycles) and remark that s(n,k) = (−1)n−kc(n,k) are the
stirling numbers of 1st kind.

Lemma 4.1. With the convention

c(n,k) =

0 n ≤ 0 or k ≤ 0 but not n = k = 0,
1 n = k = 0.

we get the recursion

c(n,k) = c(n− 1, k − 1) + (n− 1)c(n− 1, k). (4.4)

Before we get to the proof we observe, that we can write in a triangular table as seen
in Figure 4.1. We further observe that c(n,1) = (n − 1)!, because if we fix a ’starting’
element of the cycle we can arrange the remaining elements in (n− 1)! ways. It’s also
true that c(n,n) = 1, because every element has to be in a 1-cycle (a fixed point), and
that c(n,n− 1) =

(n
2
)
, because in this case all but 2 elements have to be fixed points and

there are
(n

2
)

choices for the 2 elements that are in the 2-cycle.

1

1

1 1

2 3 1

6 11 6 1

24 50 35 10 1

n=0

n=1

n=2

n=3

n=4

n=5

k=1

k=2

k=3

k=4

k=5

Figure 4.1: triangular table of c(n,k) for n,k ∈ [5]

Proof of Lemma 4.1. Let π ∈ Sn and let k be the number of cycles in π. We now want
to remove n from π:
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4.1 Counting cycles of permutations (continued)

• If n is a fixed point (1-cycle of itself), removing n yields a permutation π′ ∈ Sn−1
with k − 1 cycles. That corresponds to the first summand in the right hand side
of Equation (4.4).

• If n is not a fixed point, let p be its predecessor (π(p) = n). Removing n as in
Figure 4.2 yields a permutation π′ ∈ Sn−1 with k cycles, but we also have to
memorize p as the place where we have to put in n if we want to determine
π again, which corresponds to the second summand in the right hand side of
Equation (4.4).

n = π(p)

p

π(n)

 

p

π(n) = π′(p)

Figure 4.2: permutation π left an π′ right

With the help of Lemma 4.1 we can prove the the following Theorem:

Theorem 4.2. Let n,k ∈ N and x ∈ C, then

n∑
k=1

c(n,k)xk = x(x+ 1)(x+ 2) . . . (x+n− 1).

Proof I. With Fn(x) =
∑n
k=1 c(n,k)xk we get

Fn(x)
(4.4)
=

n∑
k=1

(
c(n− 1, k − 1) + (n− 1)c(n− 1, k)

)
xk

=
n∑
k=1

c(n− 1, k − 1)xk + (n− 1)c(n− 1, k)xk

= xFn−1(x) + (n− 1)Fn−1(x)
= (x+n− 1)Fn−1(x)

By induction with the induction conditions

F1(x) = x and F2(x) = x+ x2 = x(x+ 1)

we complete the proof.
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4. Basic Counting II

In the second proof we will only show the statement for x ∈ N. Since two distinct
polynomials of degree n have at most n−1 common evaluations we obtain the statement
for all x ∈ C.

Proof II. On the right hand side we count vectors (b1, . . . , bn) with 1 ≤ bi ≤ x+ i − 1. On
the left hand side we count pairs (π,f ) with π ∈ Sn and f : {cycles of π} → [x].

We now want to build a bijective map (b1, . . . , bn)→ (π,f ) by taking b1, . . . ,bn in that
order and placing n,n− 1, . . . ,1 in a partial permutation in that order. If k is placed at
the very left, we fix a value of f , because it will become a cycle leader in the canonical
cycle notation (Equation (3.3)):

Assume i elements (n, . . . ,n− i + 1) have been placed and consider bi+1:

Case I: 1 ≤ bi+1 ≤ x
Place n− i at the front of the partial permutation.
n− i will be a new left-to-right maximum creating a new cycle γ .
Set f (γ) = bi+1.

Case II: x < bi+1 = x+ k (1 ≤ k ≤ i)
Place n−i behind k of the already placed elements. Since larger elements
are before n− i, there are the same number of cycles now, and the k-th
cycle has now become larger by one.

Given a tuple (π,f ) we can determine the vector easily by assigning bn−i+1 = f (γ(i))
for all cycle leaders i, where γ(i) is its cycle and

bn−i+1 = x+ #(elements larger than i that are placed left of i),

for example given x = 3 and

π = 3 6 1 4 8 7 2 5
f = 2 3 2

we get

b1 b2 b3 b4 b5 b6 b7 b8
2 3+1 3 3+3 3+1 2 3+5 3+2

As we will make further use of the expression xn, we will define it here.

Definition 4.3 (Raising factorial). Let x ∈ C and n ∈ N, then the raising factorial xn is
defined as

xn := x(x+ 1)(x+ 2) . . . (x+n− 1).
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4.2 The expected number of cycles

4.2 The expected number of cycles

Throughout the entire section we are considering the uniform distribution on Sn.

Definition 4.4. Let A be a k-subset of [n]. We define a random variable

XA(π) =

1 π has a k-cycle whose elements are the elements of A,
0 otherwise.

We can easily observe that in the canonical cycle notation of π, A has to appear
consecutively, but the order of its elements except the largest element, as well as the
order of elements not in A does not matter, thus

Pr(XA = 1) =
1
n!

#(permutations having A as a cycle)

=
1
n!

(k − 1)!(n− k)!

=
1
k

(
n

k

)−1

Definition 4.5.
Zk(π)B ck(π)B #(k-cycles of π)

Observation.

Zk(π) =
∑
A∈([n]

k )

XA(π)

=⇒ E(Zk) = E


∑
A∈([n]

k )

XA(π)

 =
∑
A∈([n]

k )

E(XA) =
∑
A∈([n]

k )

Pr(XA = 1) =
∑
A∈([n]

k )

1
k

(
n

k

)−1

=
1
k

Definition 4.6.

Z(π)B
n∑
k=1

Zk(π) = #(cycles of π)

Observation.

E(Z) = E

 n∑
k=1

Zk

 =
n∑
k=1

E(Zk) =
n∑
k=1

1
k

=Hn

with Hn being the n-th harmonic number.
We can bound the n-th harmonic number by ln(n+ 1) ≤Hn ≤ ln(n) + 1 using

Hn =
∫ n+1

1

n∑
k=1

1
k
1[k,k+1](x)dx ≥

∫ n+1

1

1
x

dx = ln(n+ 1)

and

Hn = 1 +
∫ n

1

n∑
k=2

1
k
1[k−1,k](x)dx ≤ 1 +

∫ n

1

1
x

dx = ln(n) + 1
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4. Basic Counting II

4.3 The twelfefold way

In this chapter we want to count functions

f :N →M,

where N is a set of n balls and M is a set of m boxes. We can restrict f to be
• injective (when m ≥ n), • surjective (when n ≥m), • arbitrary.

Furthermore we can count up to equivalence: Balls and boxes can both be distinguish-
able (D) or indistinguishable (I). For indistinguishable boxes we have

f ∼ g⇔∃π ∈ SM such that π ◦ f = g

For indistinguishable balls we have

f ∼ g⇔∃τ ∈ SN such that f ◦ τ = g

We will now work out the solutions to this counting problems, which are summa-
rized in Table 4.3.

balls boxes arbitrary injective surjective

D D (1) mn (2) (m)n (3) m!S(n,m)
I D (4) (n+m−1

m−1
) (5) (m

n

) (6) (n−1
m−1

)
D I (7) ∑m

t=0S(n,t) (8) 1 (9) S(n,m)
I I (10) ∑m

t=0 Pt(n) (11) 1 (12) Pm(n)

Table 4.3: solutions to the counting problems

The entries 1 and 2 are easily obtained by looking at how many options we have for
each element inserting them one by one.

Entries 8 and 11 follow from the fact, that there is at most 1 ball in each box and the
boxes are indistinguishable. Therefore all we know is that n boxes have a ball and the
rest doesn’t.

Entry 5 just chooses n out of m boxes to contain one of the indistinguishable balls.
Entry 4 is obtained by inserting m − 1 seperations in a sequence of n balls, thats

m− 1 seperations out of n+m− 1 elements. See Figure 4.3.

{2,8,9}

Figure 4.3: Left: 8 balls in 4 boxes. Middle: 8 balls and 3 separators. Right: The positions of
the separators as a 3-subset of [11].

In entry 6 instead of separations we select a last ball for each box except the last box,
that is m− 1 out of n− 1 balls, the n-th ball is known to be the last ball of the last box.

In the following, we will learn theory about Stirling numbers and integer partitions.
This will lay the basis to understand the more complicated entries.
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4.3 The twelfefold way

4.3.1 Partitions of a set

Definition 4.7 (Partition). P = {S1, . . . ,Sm} with ∅ , Si ⊆ N for all i ∈ [m],
⋃m
i=1Si = N

and Si ∩ Sj = ∅ for all i , j is called a partition of the set N .
S1, . . . ,Sn are called parts or blocks.

Definition 4.8 (Stirling numbers of 2nd kind). The Stirling numbers of 2nd kind S(n,m)
are defined by S(n,m) = #(partitions of a n-set into m blocks).

We first look at some special cases:

• S(0,0) = 1

• S(n,0) = 0 (n > 0)

• S(n,n) = 1

• S(n,1) = 1

• S(n,n− 1) =
(n

2
)

• S(n,2) = 1
2(2n − 2) = 2n−1 − 1

Lemma 4.9. With those special cases we get the recursion

S(n,m) =m · S(n− 1,m) + S(n− 1,m− 1). (4.5)

Proof. Let N = [n]. We want to remove n from an existing partition:

• If n is in a block of size at least 2, we can remove n and memorize the block
it was in. That corresponds to the first summand on the right hand side of
Equation (4.5).

• If n is a block of itself, we can remove n and its block. That corresponds to the
second summand on the right hand side of Equation (4.5).

We can write the Stirling numbers of second kind in a triangular table as in Figure 4.4.

1

1

1 1

1 3 1

1 7 6 1

1 13 25 10 1

n=0

n=1

n=2

n=3

n=4

n=5

m=1

m=2

m=3

m=4

m=5

Figure 4.4: triangular table of S(n,m) for n,m ∈ [5]

We finish the lecture by stating the following theorem, which will be proven in the
next lecture:

Theorem 4.10. Let x ∈ C and n ∈ N be arbitrary, then

xn =
n∑
k=0

S(n,k)(x)k
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Lecture

5
Stirling Numbers and Integer
Partitions

In this lecture we complete our dissection of the twelvefold way from last lecture and
discuss some properties of Stirling numbers and integer partition.

5.1 The twelvefold way (continued)

Recall: S(n,m) = #(partitions of the set [n] into m parts) are the Stirling numbers of the
2nd kind. The entries 9, 7 and 3 of the twelvefold way all include Stirling numbers.

We get entry 9, which is S(n,m), by placing n distinguishable balls into m indis-
tinguishable boxes, such that there is no empty box. The order of the boxes doesn’t
matter to us and we get blocks B1,B2, ...,Bm in the boxes, which is exactly S(n,m).

{ B1 B2 ... Bm }] ] ]

For entry 7,
∑
t≤mS(n,t), we have a function that is surjective onto t boxes, where t

can range from 1 to m and the number of empty boxes is between m− 1 and 0.

{ B1 B2 ... Bt }] ] ] ] ]

Entry 3, m!S(n,m) can be derived from 9, since for distinguishable boxes we can
order them in m! ways.

Theorem 5.1. Let k,n ∈ N and x ∈ C. Then

xn =
n∑
k=0

S(n,k)(x)k ,

where (x)k = x(x − 1)...(x − k + 1) is a falling factorial.

Proof. We prove this for x ∈ N by bijection and then extend it to C as in Section 3.2.
The left-hand side is simply the number of functions f : [n]→ [x]. For the right-hand
side consider A ⊆ [x] and let FA = {f : [n]→ [x] | Im(f ) = A}. Then |FA| = |A|!S(n, |A|) as
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5.2 Stirling inversion

in entry 3 of the twelvefold way, since the functions in FA are surjective onto A. Now
for each unique A the functions f : [n]→ [x] will be in a unique FA and so we get

xn =
∑
A⊆[x]

|FA| =
∑
A⊆[x]

|A|!S(n, |A|) =
x∑
k=0

k!S(n,k)
(
x

k

)
=

n∑
k=0

k!S(n,k)
(
x

k

)
=

n∑
k=0

S(n,k)(x)k .

In the third equality we can replace the upper summation boundary by n, because if
n is larger than x the binomial coefficient will be 0 for the k > x, and if n is smaller
than x then the S(n,k) will be 0 for k > n.

5.2 Stirling inversion

Let c(n,k) = #(π ∈ Sn with k cycles). We have shown in Theorem 4.2 that xn =∑n
k=0 c(n,k)xk, where xn is a raising factorial.

Definition 5.2 (Stirling numbers of the 1st kind). Let n,k ∈ N. Then

ŝ(n,k) = (−1)n−kc(n,k)

are called the Stirling numbers of the 1st kind.

Rasing and falling factorials are related as follows:

xn = (x)(x+ 1)...(x+n− 1)
= (−1)n(−x)(−x − 1)...(−x −n+ 1) = (−1)n(−x)n.

Using this we get

(−1)n(x)n = (−x)n =
n∑
k=0

c(n,k)(−x)k =
n∑
k=0

c(n,k)(−1)kxk

=⇒ (x)n =
n∑
k=0

ŝ(n,k)xk ,

where the last implication follow from c(n,k) = (−1)n−k ŝ(n,k) and division by (−1)n.
Consider now the matrices S = (S(n,k))n,k≤N , ŝ = (ŝ(n,k))n,k≤N . Further let R≤N [x] be

the vector space of polynomials of degree ≤N in x. Then B = {xk}Nk=0 and B̂ = {(x)k}Nk=0
are both bases of this vector space and S and ŝ are transformation matrices for basis
exchange B→ B̂ and B̂→ B respectively.

We conclude that because these two matrices are inverse to one another we get∑
i≥0

S(m,i)ŝ(i,k) = δ[m=k].
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5. Stirling Numbers and Integer Partitions

Since S and ŝ are inverse matrices we get that for sequences (an) and (bn):

bn =
n∑
k=0

S(n,k)ak ⇐⇒ an =
n∑
k=0

ŝ(n,k)bk .

This identity is what we call the Stirling inversion. This is similar to a prior identity,
which we called the binomial inversion given by

bn =
n∑
k=0

(
n

k

)
(−1)kak ⇐⇒ an =

n∑
k=0

(
n

k

)
(−1)kbk .

5.3 Integer partitions

Definition 5.3 (Integer partition). A partition of n ∈ N is a sorted vector λ = (λ1,λ2, ...,λk)
with λ1 ≥ λ2 ≥ ... ≥ λk > 0 and

∑k
i=1λi = n. We write λ ` n to denote that λ is a partition

of n.

Let p(n) = #(partitions of n).

Example 4. λ = (5,5,2,1,1,1) is a partition of 15, i.e., λ ` 15. This partition can also
then represented by

522113 or 522 13.

We will also use the Ferrers diagram F(λ) or Fλ, it consists of a stack/column of λi
boxes for each entry of λ = (λ1,λ2, ...,λk).

Figure 5.1: Ferrers Diagram Fλ
when λ = (5,5,2,1,1,1).

Next we come to restricted classes of partitions

Proposition 5.4.

#(partitions of n into parts of size ≤ k) = #(partitions of n into at most k parts)

Proof. Let λ be a partition with parts of size ≤ k. Then reflecting the Ferrers diagram
along its diagonal gives us a partition λ∗ that has ≤ k parts. The partition λ∗ is called
the conjugate of λ.

Because the reflection is an involution this is a bijection between the two types of
partitions.
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5.3 Integer partitions

Fλ Fλ∗λ 7→ λ∗

Now we come to the remaining 2 entries of the twelvefold way. For entry 12 let
pk(n) = #(partitions of n into exactly k parts). We first sort our indistinguishable boxes
by the number of balls they contain. We can then represent these boxes by the columns
in the Ferrers diagram, where each square is a ball contained in the box. Entry 10 we
get by once again considering the t boxes onto which the function maps surjectively
and summing over each possible t ≤m, analogously to getting entry 7 from entry 9.
This completes the discussion of the twelvefold way.

Going back to the discussion of partitions we get the following recursion:

Proposition 5.5. pk(n) = pk−1(n− 1) + pk(n− k)

Proof. Let λ ` n, λ = (λ1, . . . ,λk) be an integer partition of n. We do the proof by
bijection and considering two cases.
Case 1 (λk = 1): Consider λ′ = (λ1, . . . ,λk−1) which is an integer partition of n− 1, i.e.
λ′ ` n− 1.
Case 2 (λk > 1): Consider λ′′ = (λ1 −1,λ2 −1, . . . ,λk −1) which is an integer partition of
n− k, i.e. λ′′ ` n− k.

Note that p(n) =
∑n
k=1pk(n). This allows to compute p(n) by first computing pk(m)

for all k,m ≤ n with the proposition. Thus the complexity of this approach is O(n2).
Next we look at the generating function for (p(n))n≥0.

Theorem 5.6 (Euler). Let x ∈ C, then

∞∑
n=0

p(n)xn =
∞∏
k=1

1
1− xk

.

Proof. We recall the geometric series 1
1−xk = 1 + xk + x2k + x3k + ...

We then interpet the factors of the product on the right-hand side, through the
geometric series, as infinite sums which we multiply and then collect the terms
that together yield xn. Note that the k here counts the size of the parts. So the x’s
coming from 1

1−x count the number of parts of size 1 and the ones from 1
1−x2 count the

number of parts of size 2. Despite having an infinite product, the coefficient p(n) of xn

only depends on those xs·k from the geometric series which have s · k ≤ n, i.e., we only
have to look on finite initial parts of a finite number of factors in the infinite product
on the right side to compute p(n).

A generic term contributing to the coefficient of xn is of the form

xa1·1xa2·2xa3·3 · · ·xam·m = xn
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5. Stirling Numbers and Integer Partitions

this term corresponds to the partition mam(m− 1)am−1 ...1a1 where we can omit entries
for which ai = 0.

Example: the term x3·1x3·2x1·3 corresponds to the partition 13233 of 12.

Remark. The Hardy-Ramanujan-Rademacher expansion gives the precise asymptotic
behaviour of p(n):

p(n) ∼ 1

4n
√

3
eπ
√

2n/3.

Another result about different classes of partitions is given by the following theorem.

Theorem 5.7. It holds

#(partitions of n into distinct parts) = #(partitions of n into odd parts).

A partition into distinct parts means that in the representation with exponents all the
exponents will be 1, e.g. 512111.

Proof I. Using the same ideas as for the generating function from Euler’s theorem we
get

∞∑
n=0

pdist(n)xn =
∞∏
k=1

(1 + xk).

To see this note that for each term xm appearing in the expansion of the product on the
right we get an expression of m as sum of different summands. For example the term
of x4 in the expansion of (1 + x)(1 + x2)(1 + x3)(1 + x4), is obtained as x · x3 and 1 · x4. So
in the simplification of the expansion of the product we get 2x4 which corresponds to
pdist(4) = 2.

As in Euler’s Theorem we use geometric series to obtain

∞∑
n=0

podd(n)xn =
∞∏
k=1

1
1− x2k+1

.

Now we use (1− x2k) = (1− xk)(1 + xk), which implies (1 + xk) = (1−x2k)
1−xk . This gives us

∞∑
n=0

pdist(n)xn =
∞∏
k=1

(1 + xk) =
(1− x2)(1− x4)(1− x6)(1− x8) · · ·
(1− x)(1− x2)(1− x3)(1− x4) · · ·

=
1

(1− x)(1− x3)(1− x5) · · ·
=
∞∏
k=0

1
1− x2k+1

=
∞∑
n=0

podd(n)xn

To get from the fist to the second line just cancel equal factors in numerator and
denominator.

Next we will see a bijective proof of the same theorem.
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5.3 Integer partitions

Proof II. Let d ` n be an integer partition of n into distinct parts, so d = (d1,d2, ...,dk),
d1 > d2 > ... > dk,

∑k
i=0di = n. Then each di can be written as di = 2aimi for some

unique ai ∈ N and odd mi ∈ N. Next we consider a reordering of the mi , namely let
{m1, ...,mk} = {µ1, ...,µl} with µ1 > µ2 > ... > µl where we delete repetitions ofmi , thereby
only keeping l out of k values.
Using the sum for n we get

n = 2a1m1 + 2a2m2 + · · ·2akmk
= (2α1 + 2α2 + · · · )µ1 + (2β1 + 2β2 + · · · )µ2 + · · ·
= r1µ1 + r2µ2 + · · ·+ rlµl

which yields the partition µr11 µ
r2
2 · · ·µ

rl
l of n into odd parts. One has to be a little careful

to prove the other direction or showing that the map is indeed injective.

Example 5. An example for the second proof

6 = 3 + 2 + 1 partition into distinct parts

= 20 · 3 + 21 · 1 + 20 · 1
= (20)3 + (21 + 20)1 = 3113 ` 6 this gives us an odd partition
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Lecture

6
Euler’s Pentagonal Number Theorem

The main goal of this lecture is to prove Eulers pentagonal number theorem and
mention a faster method for computing p(n) as an application. We then continue by
introducing the Fibonacci sequence and discussing some identities involving these
numbers.

Theorem 6.1 (Euler’s pentagonal number theorem). Let x ∈ C. Then

∞∏
k=1

(1− xk) =
∞∑

k=−∞
(−1)kx

(3k−1)k
2

= 1 +
∞∑
k=1

(−1)k
(
x

(3k−1)k
2 + x

(3k+1)k
2

)
We will use a very similar technique as in the proofs of Theorem 5.6 and Theorem 5.7,

that is we will relate the product to a generating function with coefficients given by an
even and odd variation of pdist(n), i.e.

pod(n) := podd
dist(n) :=#(partitions of n having an odd number of distinct parts),

ped(n) := peven
dist (n) :=#(partitions of n having an even number of distinct parts).

Remark. It is crucial to note that pod is different from podd from Lecture 5: here we
look at the partitions of n into an odd number of distinct parts while in lecture 5 we
focused on partitions into parts of odd cardinality.

In the proof we use the following definitions related to the Ferrers diagram of a
partition.

Definition 6.2 (The slope and front of a partition). Look at a generic partition into k+1
distinct parts of n ∈ N, and write it as λ = (λk ,λk−1, . . . ,λ1,λ0), where λ0 < λ1 < . . . <
λk−1 < λk such that

∑k
i=0λi = n. Then we call front(λ) := λ0 the front of the partition.

The slope of the partition is given by the largest integer m, such that λi −λi−1 = 1 for
all i ∈ {k −m+ 1, . . . , k}. We will denote this by slope(λ) =m ∈ N.

The definitions are illustrated on the left side of Figure 6.1.
Next we introduce a ”move” to transform an odd partition (a partition with an odd

number of parts) into an even partition.
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6. Euler’s Pentagonal Number Theorem

front

slope

FtS7−→

Figure 6.1: The diagram on the left side highlights the slope in green and the front in red.
The purple blocks are the successor of the front. The right hand side shows the partition
obtained by moving the front over the slope.

Definition 6.3 (”Moving the front over the slope”). Let λ = (λk , . . . ,λ0) be a partition
of n ∈ N and let λ0 =m ∈ N be its front, also assume that m ≤ k. Then we define

FtS(λ) := (λk + 1, . . . ,λk−m+1 + 1,λk−m, . . . ,λ1).

On the diagram side this corresponds to removing the front part and redistribute its
m squares one by one from the biggest part on until there are none left. III

Remark. An example application of FtS is shown in Figure 6.1. Note that if λ ` n is an
odd/even partition into distinct parts, then by construction FtS(λ) ` n is an even/odd
partition into distinct parts.

Now we are ready for the proof of Theorem 6.1. For reasons of readability the proof
will be split into several propositions.

Proposition 6.4.
∞∏
k=1

(1− xk) =
∞∑
n=0

(
ped(n)− pod(n)

)
xn.

Proof. As in the proof of Theorem 5.6 and the other results involving generating
functions we compare coefficients. We have seen that

∏∞
k=1 (1 + xk) =

∑∞
n=0pdistx

n. Now
we have to track the signs. A summand from the expanded product on the left has a
minus sign if it is composed of an odd number of nontrivial factors, otherwise the sign
is plus. Hence, the coefficient of xn is exactly ped(k)− pod(k).

IIIThe notation FtS is a shortcut for for Front to Slope.
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6. Euler’s Pentagonal Number Theorem

For example the coefficient of x7 in the product (1 − x) · · · (1 − x7) is 3 − 2, i.e., 1,
because 7 has three even partitions 1 + 6, 2 + 5 and 3 + 4 into distinct parts and two
odd partitions 7 and 1 + 2 + 4 into distinct parts.

The next lemma shows that ped(n)− pod(n) is zero for most cases of n, actually it is
non-zero only for pentagonal numbers.

Lemma 6.5.

pe
d(n)− po

d(n) = (−1)kδ
[
n =

(3k ± 1)k
2

]
.

Proof. We start by assigning another parameter ∆ to a partition λ with distinct parts.
Given the Ferrers diagram of λ = (λk , . . . ,λ0) we distinguish two cases.

If the front and the slope of λ share a square we set ∆(λ) = 1, this is illustrated
on the left side of Figure 6.2. Note that this case is characterized by slope(λ) = k + 1.
Otherwise, we set ∆(λ) = 0, this is illustrated on the right side of Figure 6.2 and
corresponds to slope(λ) < k + 1.

∆ = 1 ∆ = 0

Figure 6.2: The two cases: ∆(λ) = 1 and ∆(λ) = 0

We partition the set of all partitions λ ` n with distinct parts into three classes as
follows:

Type I: slope(λ) ≥ front(λ) +∆(λ),

Type II: slope(λ) < front(λ)−∆(λ),

Type III: neither of the other types.

The key to the proof of the lemma will be a sign reverting bijection between the
partitions of Type I and Type II. Let us, however, first look at Type III. From the
definition of the other two types we directly see that a Type III partition λ has ∆(λ) = 1.
Using this it follows that

slope(λ) ∈ {front(λ)− 1, front(λ)}.
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6. Euler’s Pentagonal Number Theorem

We distinguish the two cases.
Case 1: k = slope(λ) = front(λ).
The number of boxes of a Ferrers diagram sum up to the n of the corresponding

partition. Figure 6.3 indicates a partition of the Ferrers diagram into three ”triangles”.
The number of boxes in each of the the blue and the orange triangle is 1+2+. . . , k−1 =

(k
2
)

and the number of boxes in the purple triangle is 1 + 2 + . . . , k =
(k+1

2
)
. In total this

makes

n = 2
(
k

2

)
+
(
k + 1

2

)
= k2 − k +

k2 + k
2

=
3k2 − k

2
,

hence, in this case n is a pentagonal number.

k

k

k

k

k

k
k-1k-1

k

Figure 6.3: On the left there is a schematic representation of the first case. The right side
shows how to partition the shape into three triangles.

Case 2: k = slope(λ) = front(λ)− 1.
In this case we use the partition of the Ferrers diagram indicated in Figure 6.4. We

obtain

n =
(
k

2

)
+ 2

(
k + 1

2

)
=
k2 − k

2
+ k2 + k =

3k2 + k
2

,

hence again n is a pentagonal number.
Together the two cases show that for every pentagonal number there is a unique

Type III partition. These partitions contribute (−1)k to the difference ped(n) − pod(n)

whenever n = (3k±1)k
2 .

A bijection between Type I and Type II.
Let λ ` n be a partition into distinct parts of Type I, so slope(λ) ≥ front(λ) +∆(λ),

in particular front(λ) ≤ slope(λ) −∆(λ) ≤ k. Therefore, we can transform λ into λ′

by moving the front over the slope, i.e., λ′ = FtS(λ). We simplify notation by letting:
S = slope(λ), F = front(λ), S ′ = slope(λ′), and F′ = front(λ′).
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6. Euler’s Pentagonal Number Theorem

k

k

k-1

k

k+1

k

Figure 6.4: A partition of the Ferrers Diagram into three triangles for Case 2.

By construction of λ′ via FtS(λ) we have S ′ = F and F′ ≥ F + 1 whence S ′ ≤ F′ − 1.
If ∆(λ′) = 0, this show that S ′ < F′ −∆(λ′) so that λ′ is Type II. If, however, ∆(λ′) = 1,
then the FtS operation has added a box to the smallest part of λ′ which used to be the
second to largest part of λ, therefore F′ ≥ F + 2 in this case and again S ′ < F′ −∆(λ′) so
that λ′ is Type II.

If λ ` n is apartition into distinct parts of Type II, then we can apply a slope to front
operation, i.e., the inverse of FtS. By construction of λ′ we have F′ = S and S ′ ≥ S
whence S ′ ≥ F′. If ∆(λ′) = 0 we have S ′ ≥ F′ +∆(λ′) so that λ′ is Type I. If ∆(λ′) = 1 we
note that since S ′ reaches the front S ′ is equal to the number of parts in λ′. Since the
new partition λ′ has one part more than λwe have S ′ ≥ S+1 = F′+1, i.e., S ′ ≥ F′+∆(λ′)
so that λ′ is Type I.

We have proven that the Type I and Type II partitions are in bijection via a bijective
map that changes the parity, hence, for n , 3k±k

2 we get ped(n)−pod(n) = 0. Together with
the analysis of the Type III partitions this concludes the proof of the lemma.

Finally we prove Eulers pentagonal numbers theorem.

Proof of Theorem 6.1. Using Proposition 6.4 and Lemma 6.5 we get

∞∏
k=0

(1− xk) =
∞∑
k=0

(
ped(k)− pod(k)

)
xk = 1 +

∞∑
k=1

(−1)k
(
x

(3k−1)k
2 + x

(3k+1)k
2

)
=

∞∑
k=−∞

(−1)kx
(3k−1)k

2 .

Where does the name pentagonal number come from? The number ck = (3k−1)k
2 is the

number of dots in a collection of k nested pentagons as in Figure 6.5. Each side of the
largest pentagon in the nesting corresponding to ck has k dots, hence, ck − ck−1 = 3k −2.
This recursion together with the initial condition c1 = 1 yields the formula for ck.

The following proposition is a consequence of the pentagonal number theorem.
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6. Euler’s Pentagonal Number Theorem

1 2 3 4

c1 = 1 c2 = 5 c3 = 12 c4 = 22

Figure 6.5: The nested pentagons corresponding to c1, c2, c3 and c4.

Proposition 6.6. The partition numbers satisfy the recursion

p(n) = p(n− 1) + p(n− 2)− p(n− 5)− p(n− 7) + p(n− 12) + . . .

=
∑
k≥1

(−1)k
(
p(n− (3k − 1)k

2
) + p(n− ((3k + 1)k

2
)
)
.

Proof. Recall that the generating function of partitions satisfies

∞∑
n=0

p(n)xn =
∏
k≥1

1
1− xk

.

This then yields that
∞∑
n=0

p(n)xn
∏
k≥1

(1− xk) = 1.

Using the pentagonal number theorem we have another way to write
∏
k≥1(1 − xk).

This allows to rewrite the equation: ∞∑
n=0

p(n)xn

 ∞∑
k=−∞

(−1)kx
(3k−1)k

2

 = 1.

The coefficient of xn in this product is p(n)−p(n−1)−p(n−2)+p(n−5)+p(n−7)− . . . The
coefficient of of xn on the right side is zero for all n > 0. This concludes the proof.

Remark. Since there are O(
√
n) pentagonal numbers ≤ n we can compute p(n) in O(

√
n)

steps if p(m) for all m < n is already known. This shows that p(n) can be computed in
O(n
√
n).
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6. Euler’s Pentagonal Number Theorem

6.1 Fibonacci sequence

The Fibonacci sequence was introduced in the renaissance by Leonardo de Pisa to
model the growth of a populations of rabbits. .

Definition 6.7. The Fibonacci sequence is the sequence (Fn)n∈N satisfying the recursion:

F0 := 0, F1 := 1, Fn+1 := Fn +Fn−1.

There are many other models or problems that can be described by the Fibonacci
sequence.

Example 6 (Counting with 1’s and 2’s). Let f (n) := #( ways of writing n as a sum
of 1 and 2), then f (n) is given by the (n + 1)-th Fibonacci number Fn+1. To see this
note that clearly f (1) = 1 and f (2) = 2. Now given f (n − 1) and f (n − 2), we find
f (n) = f (n− 1) + f (n− 2), by either adding a 1 to a composition of n-1 (f (n− 1) ways)
or adding a 2 to a composition of n− 2 (f (n− 2) ways).

Remark. Instead of compositions of n as sums of 1s and 2s we can equivalently think
of tilings of a 1×n-board with monominoes and dominoes.

Example 7 (Reflections in two glass layers). Take two glass layers and stack them on
top of each other. A light-ray can either pass through it or reflect at the top, the middle
(where the two layers meet) or the bottom of the stacked glass layers. Then the number
of possibilities for the light ray to pass through the glass and be reflected n times—call
it gn—adheres to the Fibonacci recursion with g0 = 1 and g1 = 2, i.e. gn = gn−1 + gn−2,
since the last reflection was either at the boundary (gn−1 possibilities) or the middle of
the glass, at which point its second to last reflection has to be at the boundary (gn−2
possibilities).

Figure 6.6: The different ways a light ray can be reflected up to 3 times. The red reflected light
ray does not count, because it does not pass through the glass

There are many nice identities involving Fibonacci numbers. The following proposi-
tion collects a few of them.

Proposition 6.8 (Identities for f (n)). (A) 1 + f (1) + f (2) + . . .+ f (n) = f (n+ 2),

(B) f (0) + f (2) + . . .+ f (2n) = f (2n+ 1),
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6.1 Fibonacci sequence

(C) f (m+n) = f (m) · f (n) + f (m− 1) · f (n− 1),

(D)
(n

0
)

+
(n−1

1
)

+ . . .+
(n−bn/2c
bn/2c

)
= f (n).

(E) f (n)2 = f (n− 1) · f (n+ 1) + (−1)n

Proof. (A) Given a monomino-domino tiling (m/d-tiling) of an 1×(n+2) board, delete
the last domino that appeared in the tiling from left to right and the chain of
monominoes directly after it, e.g (2,1,2,1,1,1, [2],1,1,1)− > (2,1,2,1,1,1). Then
this gives a bijection between Fn+2 and 1 +F0 + . . .+Fn. For the inverse just add a
sequence 2,1,1,1, . . . with n−m 1s to a tiling in Fm (m ≤ n) to make it a tiling in
Fn+2.

(B) This is very similar to [A], this time we look for the rightmost monomino (it
exists because 2n+ 1 is odd!) and remove it together with the dominoes to its
right. The result is a tiling of an even m.

(C) Take the m+ n-board and split it into two boards of size m and n respectively.
Either the splitting is at a break line (no domino overlapped both parts) then we
get Fm ·Fn possibilities to tile the parts independently; or a domino was sitting
where we split, so we keep this domino and have Fm−1 ·Fn−1 possibilities to tile
the left and right part.

(D) Let F be the set of all tilings of an 1 × n-board, so |F | = Fn. Let Fk ⊂ F be
the subset of those tilings which consist of n− k pieces, i.e., k of the pieces are
dominoes. It follows that |Fk | =

(n−k
k

)
and F is the disjoint union of the Fk with

0 ≤ k ≤ bn/2c.

(E) We use the monomino-domino tiling again and show a bijection between the two
sides. If a rightmost breakline exists, then swapping the upper and lower halves

n

n

n+1

n-1

last breakline last breakline

to the right of the breakline is a bijection. Thus, we have a bijection for pairs of
tilings with a breakline. If there is no breakline, then the monomino-domino
tiling representation consists of dominoes only. This is only possible if both
boards are of even length. Depending on whether n is even or odd there is exactly
one such tiling on the left respectively right side. This tiling is accounted for by
the (−1)n term.
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Lecture

7
Binet’s Formula and Linear
Recurrences

In the previous lecture we met Fibonacci numbers and proved some nice formulas
involving them. We start this lecture with the derivation of an explicit formula for Fn.

Proposition 7.1 (Binet´s Formula).

Fn =
1
√

5

(1 +
√

5
2

)n
−
(

1−
√

5
2

)n
Proof. Consider the generating function of the Fibonacci sequence:

F(z) :=
∑
n≥0

Fnz
n.

We claim that this generating function satisfies the functional equation

F(z) · (1− z − z2) = z.

To see this we multiply F(z) with z and z2:

zF(z) =
∑
n≥1

Fn−1z
n and z2F(z) =

∑
n≥2

Fn−2z
n.

Using this we get F(z) · (1− z − z2) = F(z)− zF(z)− z2F(z) =∑
n≥0

Fnz
n −

∑
n≥1

Fn−1z
n −

∑
n≥2

Fn−2z
n = F0(z0 − z1) +F1z

1 +
∑
n≥2

(Fn −Fn−1 −Fn−2)zn.

Now recall that F0 = 0, F1 = 1 and Fn = Fn−1 +Fn−2 for all n ≥ 2. This proves the claim.
For the following we use partial fraction decomposition as a black box. It tells us

that
1

1− x − x2 =
1

(1−Φx)(1− Φ̄x)
=

a

1−Φx
+

b

1− Φ̄x

With Φ and Φ̄ being the roots of 1 − x − x2 and a, b being appropriate constants. A

standard computation shows that Φ = 1+
√

5
2 ≈ 1,61803 , Φ̄ = 1−

√
5

2 ≈ −0,61803 , a = Φ√
5
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7. Binet’s Formula and Linear Recurrences

and b = Φ̄√
5
. We thus get:

∑
n≥1

Fnz
n = F (z) =

z

1− z − z2 = z ·
(

a

1−Φz
+

b

1− Φ̄z

)

= z ·


Φ√
5

1−Φz
+

Φ̄√
5

1− Φ̄z

 =
z
√

5
·
(

Φ

1−Φz
+

Φ̄

1− Φ̄z

)
geom. series

=
z
√

5
·

Φ ·∑
n≥0

(Φz)n − Φ̄ ·
∑
n≥0

(
Φ̄z

)n =
∑
n≥1

(
Φn − Φ̄n

√
5

)
zn

Comparing the coefficients of zn and plugging in the values of Φ and Φ̄ we now get
Binet’s formula:

Fn =
1
√

5

(1 +
√

5
2

)n
−
(

1−
√

5
2

)n .
We next give a second proof of the proposition which is using some linear algebra

instead of generating functions.

Proof. We first note that Fibonacci Numbers can be generated by iterated matrix
multiplication:

Let AB

(
1 1
1 0

)
then

(
Fn+1
Fn

)
= A ·

(
Fn
Fn−1

)
= An ·

(
F1
F0

)
= An ·

(
1
0

)
The characteristic polynomial of A is PA(x) = (1− x)(−x)− 1 = x2 − x − 1. This factors
as PA(x) = (x −Φ) · (x − Φ̄) with Φ and Φ̄ being the same numbers as in the first proof.
In particular Φ is the golden ratio. Since Φ and Φ̄ are distinct we know that A can
be diagonalized. Associated to the roots of PA(x), i.e., the eigenvalues, we find the
following eigenvectors.

vΦ =
(

2
−1 +

√
5

)
and vΦ̄ =

(
2

−1−
√

5

)
From linear algebra we know that A =Q ·D ·Q−1 where the diagonal matrix D and he
transformation matrices are given as follows:

D =
(
Φ 0
0 Φ̄

)
Q = [vΦ vΦ̄ ] =

(
2 2

−1 +
√

5 −1−
√

5

)
Q−1 =

(
1 +
√

5 2
−1 +

√
5 2

)
· 1

4 ·
√

5

The good news is that An =Q ·Dn ·Q−1 where Dn is diagonal with diagonal entries Φn

and Φ̄n. A standard computation yields (An)2,1 = Fn = 1√
5
(Φn + Φ̄n).
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7. Binet’s Formula and Linear Recurrences

From Binet’s formula we get the growth rate of the Fibonacci numbers: lim
n→∞

Fn+1
Fn

= Φ ,

i.e., the growth rate is the golden ratio. One of the nice properties of this number is
that its continued fraction expansion consists of an infinite sequence of 1s. A proof
can be given by an induction which shows:

Fn+1
Fn

= 1 + 1
1+ 1

1+ 1
1+ 1
...

}
n times

7.1 Solving linear recurrences

In the first part of this lecture we found an explicit formula for Fibonacci numbers.
These numbers are given by a specific linear recurrence. Now we look at a sequence
given by a general linear recurrence and study how to obtain an explicit formula for
the entries of the sequence.

A typical linear recurrence is given by

fn+k = b1fn+k−1 + · · ·+ bkfn (7.6)

and initial conditions: f0 = c0, f1 = c1, · · · , fk−1 = ck−1
For convenience we write fn+k + a1fn+k−1 + · · ·+ akfn = 0 with ak = −bk. We will work

with the generating function F(x) :=
∑
n≥0 fnx

n of the sequence. The following four
steps are a high level description of our approach:

1. Write F(x) as a rational function F(x) =Q(x)/P (x).

2. Let P̂ (x) be the reflected polynomial of P (x) and determine the roots of P̂ (x).

3. Use the roots to find the partial fraction decomposition of F(x).

4. Expand the terms of the partial fraction decomposition as geometric series and
collect terms belonging to xn to find fn.

1. Define Q(x) := F(x) + a1xF(x) + · · ·+ akxkF(x) and note that due to the recurrence
coefficents of xn in Q(x) are 0 for all n ≥ k. Therefore Q(x) is a polynomial of degree
≤ k − 1. In fact we can write Q(x) explicitly as Q(x) = c0 + (c1 + a1c0)x + (c2 + a1c1 +
a2c0)x2 + · · ·+ (

∑k−1
i=0 ciak−1−i)xk−1 with a0 = 1 in the last term. We can thus write F(x) as

a rational function:

F(x) =
Q(x)

1 + a1x+ a2x2 + · · ·+ akxk
=:
Q(x)
P (x)

(7.7)

2. Let P̂ (x) = xk+a1x
k−1 + · · ·+ak be the reflected polynomial of P (x) = 1+a1x+ · · ·+akxk.

Suppose that we know the factorization P̂ (x) = (x −α1)m1 · · · (x −αs)ms with
∑
mi = k of

P̂ (x). A simple calculation shows that P (x) = xk P̂ (1
x ). Hence, we have the following

expression for P (x) = xk P̂ (1
x ) = (1−α1x)m1 · · · (1−αsx)ms .

3. Next we will be looking for the partial fraction decomposition of F(x).
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7.1 Solving linear recurrences

Theorem 7.2 (Partial fraction decomposition). If

P (x) = xk P̂
(1
x

)
= (1−α1x)m1 · · · (1−αsx)ms

is a polynomial of degree k =
∑
imi , then there exist constants γ11,γ12, · · · ,γ1m1

,
γ21, · · · ,γ2m2

, · · · · · · ,γs1, · · · ,γsms such that :

1
P (x)

=
s∑
j=1

mj∑
i=1

γi j
(1−αjx)i

(7.8)

Next we show how to rewrite a generic term of the partial fraction decomposition
by using the binomial theorem for negative exponents and (−i)n = (−1)n(n+ i − 1)n;

1
(1−αx)i

=
∑
n≥0

(
−i
n

)
(−αx)n =

∑
n≥0

(
n+ i − 1

n

)
(αx)n =

∑
n≥0

(
n+ i − 1
i − 1

)
(αx)n (7.9)

4. From F(x) =Q(x)/P (x) together with 7.8 and 7.9 we find thatIV

fn = [xn]
(
Q(x)

s∑
j=1

mj∑
i=1

∑
t≥0

γi j

(
t + i − 1
i − 1

)
αtjx

t
)

(7.10)

If Q(x) =
∑k−1

0 dix
i and the polynomial P (x) has no multiple root (mj = 1∀j) then:

fn
(7.8)
= [xn]

Q(x)
k∑
j=1

γj
1

1−αjx

 = [xn]

Q(x)
k∑
j=1

γj
∑
t≥0

αtjx
t


=
k−1∑
i=0

di

 k∑
j=1

γjα
n−i
j

 =
k∑
j=1

k−1∑
i=0

di
γj

αij

 αnj
hence, fn =

∑k
j=1 gjα

n
j .

Claim: In the general case we get

fn =
s∑
j=1

gj(n)αnj , where gj(n) is a polynomial in n of degree < mj (7.11)

Proof of claim 7.11. Recall from 7.10 that fn = [xn](
∑s
j=1Q(x)

∑mj
i=1

∑
t≥0γi j

(t+i−1
i−1

)
αtjx

t).
To prove the claim it is thus enough to to show that for a fixed j:

[xn]

Q(x)
mj∑
i=1

∑
t≥0

γi j

(
t + i − 1
i − 1

)
αtjx

t

 = gj(n)αnj

IVThe notation [xn]A(x) is used to refer to the coefficient of xn in the power series or polynomial A(x).
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7. Binet’s Formula and Linear Recurrences

where gj(n) is a polynomial in n of degree ≤m− 1.

Using Q(x) =
∑k−1
l=0 dlx

l and letting m =mj and α = αj and γi = γi j we get:

[xn]

Q(x)
m∑
i=1

∑
t≥0

γi

(
t + i − 1
i − 1

)
αtxt


=d0

m∑
i=1

γi

(
n+ i − 1
i − 1

)
αn + d1

m∑
i=1

γi

(
n+ i − 2
i − 1

)
αn−1 + · · ·+ dk−1

m∑
i=1

γi

(
n+ i − k
i − 1

)
αn−k+1

=d0

m∑
i=1

γi
(i − 1)!

(n+ i − 1)i−1α
n + d1

m∑
i=1

γi
(i − 1)!

1
α

(n+ i − 2)i−1α
n

+ · · ·+ dk−1

m∑
i=1

γi
(i − 1)!

1
αk−1

(n+ i − k)i−1α
n

= g(n)αn

To see that g(n) is indeed a polynomial in n of degree ≤m−1 note that only the falling
factorials depend on n and that (n− s)r is a polynomial in n of degree r.

Applying this to each of the roots αj of P̂ (x) in 7.10 we get fn =
∑s
j=1 gj(n)αnj .

The following example shows that in practical situations we can simplify the cal-
culation by treating the coefficients of the polynomials gj(n) as unknowns of a k × k
system of linear equations.

Example 8. Consider the linear recursion an = 4an−1 − 5an−2 + 2an−3 with initial con-
ditions: a0 = 2, a1 = 6, and a2 = 11. The generating function A(x) =

∑
anx

n satisfies
(1−4x+ 5x2 −2x3)A(x) = P (x)A(x) =Q(x). Since P̂ (x) = x3 −4x2 + 5x−2 = (x−1)2(x−2)
there are coefficients a, b and c such that Q(x)

p(x) = a
(1−x)2 + b

1−x + c
1−2x . From the theory

7.11 we know, that there are polynomials f (n) of degree one and g(n) of degree zero
such that

an = f (n)1n + g(n)2n = (An+B)1n +C2n.

With the initial conditions and the coefficients A, B, C as variables we get:

a0 = 2 = B+C
a1 = 6 = A+B+ 2C
a2 = 11 = 2A+B+ 4C

This is a linear system, with the unique solution A = 3, B = 1 and C = 1. Hence,
an = (3n+ 1)1n + 1 · 2n = 1 + 3n+ 2n.

We close the lecture by hinting at another way of obtaining Binet’s Formula (Proposi-
tion 7.1) and formulas for more general linear recurrences. The exponential generating
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7.1 Solving linear recurrences

function of the Fibonacci numbers is given by G(z) =
∑
n≥0Fn

zn
n! . From the recursion

Fn+2 = Fn+1 +Fn we get∑
n≥0

Fn+2
zn

n!
=

∑
n≥0

Fn+1
zn

n!
+
∑
n≥0

Fn
zn

n!
, hence G”(z) = G′(z) +G(z).

The initial conditions F0 = 0 and F1 = 1 yield evaluations G(0) = 0 and G′(0) = 1.
Altogether we obtain a linear differential equation. The theory of linear differential
equations tells us how to solve such a system. We omit the details and just state

the solution G(z) =
1
√

5

(
e

1+
√

5
2 z − e

1−
√

5
2 z

)
. Expanding this function as a power series we

get G(z) =
∑
n≥0

1
√

5

1 +
√

5
2

n

+
1−
√

5
2

n znn!
. Extracting the coefficient of zn/n! we again

obtain Binet’s Formula.
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Lecture

8
Formal Power Series and the Symbolic
Method

In the last chapter, we have seen that the generating function can be a useful tool, when
dealing with (integer) sequences. The theory of power series developed in Analysis I
is not always helpful in this context though. For example, the convergence of a series,
while a big part of the theory in Analysis, is not really relevant in this context. On the
other hand, while in Analysis we tried to deal with infinite sums, here we will make
sure that calculating any element in the sequence requires only finitely many steps.
We will therefore have a look at the theoretical foundations for the power series used
in combinatorics in this chapter.

8.1 Formal power series

Example 9. ∑
k≥0

k!xk

is an important series in Combinatorics, it is the sequence of factorials. It would be a
pity not to consider it, just because its convergence radius in classical analysis is 0. It
might also seem that ∏

k≥0

1
1− xk

=
∏
k≥0

∑
i≥0

xki

is not finitely computable, but it actually is, because for any n, we can truncate the
product and the sum to only consider the first n elements. We know that if we do not
choose x0 in any of the later factors of the infinite product, then the exponent of x will
be higher than n.

We will however make use of some results from Analysis in the form of shortcut
notation: ∑

k≥0

xk =:
1

1− x

∑
k≥0

xk

k!
=: ex

Definition 8.1. A Formal Power Series (FPS) is an integer sequence, but instead of
writing it in the form (ak)k∈N, we write it as∑

k≥0

akx
k
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8.1 Formal power series

Remark. x is not really a variable from any space whatsoever, it just helps us preserve
the order of the elements of the integer sequence.

Definition 8.2. We define addition, multiplication and scalar multiplication on these
power series as expected: ∑

k≥0

akx
k +

∑
k≥0

bkx
k =

∑
k≥0

(ak + bk)x
k

∑
k≥0

akx
k

 ·
∑
k≥0

bkx
k

 =
∑
n≥0

n∑
k=0

akbn−kx
n

c ·

∑
k≥0

akx
k

 =
∑
k≥0

cakx
k

Fixing an underlying ring, e.g. C (or Z), we can write the space of formal power series
as C[[x]].

Remark. With these operations, the set of formal power series is a commutative ring
with 0 = (0)n∈N and 1 = (1,0,0,0,0,0, ...). It is actually even an integral domain (if the
chosen ring is one), since there are no zero divisors and it forms a module over the
chosen ring.

Proposition 8.3. A formal power series has a multiplicative inverse if and only if a0 , 0.

Proof. From the definition of of the product, in order to have

1 =

∑
k≥0

akx
k

·
∑
k≥0

bkx
k

 =
∑
n≥0

n∑
k=0

akbn−kx
n = a0b0+(a1b0+a0b1)x+(a2b0+a1b1+a0b2)x2+. . .

we need to have a0b0 = 1, so a0 , 0 is necessary. If a0 , 0, we know b0 = 1
a0

. From

a1b0 + a0b1 = 0, we can then deduce b1 = −a1b0
a0

= −a1
a2

0
and so on, the precise recursive

formula for bn is

bn = −
∑n
k=1 akbn−k
a0

By choosing the bn appropriately, we can therefore make all of the coefficients the
same on both sides.

Remark. Similarly to Z, we can still divide by other elements of the ring sometimes
and this division is well-defined. For example∑

k≥1x
k

x
=

∑
k≥0

xk ⇔
∑
k≥1

xk = x ·

∑
k≥0

xk


The well-definition of this operation comes from the fact that C[[x]] is an integral
domain.
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8. Formal Power Series and the Symbolic Method

Example 10. The series from Example 9 has an inverse. Its inverse can be computed
just like we did it in the above proof:∑

k≥0

k!xk

−1

= 1− x − x2 − 3x3 − 13x4 − 71x5 − ...

Some other interesting inverse is the inverse of the following power series:

f (x) =
ex − 1
x

=
∑
k≥0

xk

(k + 1)!
⇒ B(x) := f (x)−1 =

x

ex − 1
= 1− x

2
+
x2

12
− x

4

90
+ ...

The series B(x) is the exponential generating function of the Bernoulli numbers that
start b0 = 1,b1 = −1

2 ,b2 = 1
6 ,b3 = 0, . . . The Bernoulli numbers are a sequence of rational

numbers which can also be found as values of Bernoulli polynomials at 0 and 1.
Because of the above they are subject to a nice combinatorial identity:

n∑
k=0

1
(k + 1)!

bn−k
(n− k)!

= 0

n∑
k=0

(
n+ 1
n− k

)
bn−k = 0

n∑
k=0

(
n+ 1
k

)
bk = 0

n∑
k=0

(
n

k

)
bk = bn

Bernoulli and Sums You certainly know the sum
∑n−1
k=0 k

1 =
(n

2
)
. We will now derive

a closed form for
∑n−1
k=0 k

s in terms of Bernoulli numbers:

P (x,n) =
∑
s≥0

n−1∑
k=0

ks
 xss! =

∑
s≥0

n−1∑
k=0

(kx)s

s!
=
n−1∑
k=0

∑
s≥0

(kx)s

s!
=
n−1∑
k=0

ekx =
enx − 1
ex − 1

⇒ xP (x,n) = B(x) · (exn − 1)

Now the coefficients from the left hand side can be determined using the right hand
side

xP (x,n) =
∑
s≥0

n−1∑
k=0

ks
 xs+1

s!
=

∑
l≥0

bl
xl

l!


∑
m≥1

(xn)m

m!


⇒

n−1∑
k=0

ks = s!
s∑
l=0

bl
l!

ns+1−l

(s+ 1− l)!
=

1
s+ 1

s∑
l=0

(
s+ 1
l

)
bln

s+1−l (8.12)

This shows that
∑n−1
k=0 k

s is a polynomial in n of degree s+ 1.
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8.1 Formal power series

Example 11.

s = 3 :
n−1∑
k=1

k3 =
1
4

3∑
l=0

(
4
l

)
bln

4−l =
1
4

(b0n
4 + 4b1m

3 + 6b2n
2 + 4b3n) =

n4

4
− n

3

2
+
n2

4
=

(
n

2

)2

8.1.1 Composition of FPS

Observation. If f(x) and g(x) are formal power series and g(0)=0 (this is another way of
saying the constant part is 0), then f(g(x)) is well-defined.

Proof.

f (x) =
∑
k≥0

akx
k , g(x) =

∑
k≥0

bkx
k

f (g(x)) =
∑
n≥0

an(g(x))n

What is the coefficient of xn? It is given by

n∑
k=1

ak


∑

i1+...+in=n
ij≥1

bi1 · . . . · bik


The fact that ij ≥ 1 is only true because g(x) = 0, otherwise we would have to deal with
an unbounded number of summands, which makes no sense in our world, because the
elements of the sequence (coefficient of the FPS) would not be finitely computable.

Example 12.

f (x) = ex − 1, g(x) = ln(1 + x) =
∑
k≥1

(−1)k+1x
k

k

⇒ f (g(x)) = x

Example 13.

f (x) = ex, g(x) = 1 + x

⇒ f (g(x)) = ex+1??

This actually doesn’t make sense in FPS theory, for the constant coefficient you would
need to add up ∑

k≥0

1
k!

Interestingly, ex+y again makes sense, but we will not go into details here.
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8. Formal Power Series and the Symbolic Method

Taking roots

f (x) =
√
g(x) ⇔ f (x)2 = g(x)

Example 14. Consider f (x) = (1 + x)−
1
2 =

1
√

1 + x
then f 2(x) =

1
1 + x

or equivalently

f (x)2 · (1 + x) = 1. We claim that the Binomial Theorem holds in this situation, i.e.,

f (x) = (1 + x)−
1
2 =

∑
k≥0

(
−1

2
k

)
xk. To verify the claim we need a little computation:

f 2(x) =

∑
k≥0

(
−1

2
k

)
xk


2

=
∑
n≥0

n∑
k=0

(
−1

2
k

)(
−1

2
n− k

)
xn

!=
∑
n≥0

(
−1
n

)
xn =

∑
n≥0

(−1)nxn =
∑
n≥0

(−x)n =
1

1 + x

The third equality is a special instance of the Vandermonde identity. Here we use that
this identity holds for values in C, see Lecture 3.

8.2 Generating functions and the symbolic method

LetA be a family of ”combinatorial objects” of a certain ”size”. Let further an =#(members
of size n in A. The generating function of A is

FA(x) = A(x) =
∑
k≥0

akx
k =

∑
a∈A

x|a|

Note that ∅ ∈ A, |∅| = 0 Now for two different families A and B, we can write A+B for
their disjoint union with generating function

FA+B = FA(x) +FB(x)

If the elements of some family are composed of one element of A and one element of
Band their length is defined as the combined length, then this is the equivalent of the
cartesian product, so we write this as A×B.

FA×B = FA(x) ·FB(x)

Finally let A∗ denote the family of finite sequences of objects of A with length
defined as

|(a1, . . . , an)| =
n∑
k=0

|ak | ⇒ FA∗(x) =
1

1−A(x)
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8.2 Generating functions and the symbolic method

Example 15. Let F be the set of finite strings of 0s and 1s, but with no consecutive 0s
where the size is the length of the string, i.e. the number of bits:

F = {∅,0,1,01,10,11,010, . . .}

F = ∅+ {0}+ {1,01} × F ⇒ F(x) = 1 + x+ (x+ x2)F(x) ⇒ F(x) =
1 + x

1− x − x2

We obtain the generating function of the Fibonacci numbers fn.

Example 16. T : binary trees, where the size is given by the number of nodes.

∅T :

T = ∅+ {·} × T × T
⇒ T (x) = 1 + xT (x)2

This is a Catalan family, which gives rise to the Catalan numbers, maybe the most
famous integer sequence in Combinatorics.
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Lecture

9
Catalan Numbers and q-Enumeration

We continue with the discussion of the results we got from the symbolic method for
generating functions, only this time we take a more pedestrian approach to computing
these. One important example for this are the Catalan numbers Cn = #(rooted binary
trees of n nodes). They are defined by the initial conditions C0 = C1 = 1 and the
recursion

Cn+1 =
n∑
k=0

CkCn−k .

The recursion formula is based on the fact that for a tree with n+ 1 nodes if there are k
nodes in the left subtree of the root, then there must be n− k in the right subtree. The
generating function is given by

T (x) =
∞∑
n=0

Cnx
n

and its square by

T 2(x) =
∑
n≥0

( n∑
k=0

CkCn−k︸       ︷︷       ︸
=Cn+1

)
xn =

∞∑
n=1

Cnx
n−1.

The last equality sign is due to an index shift. Based on this we again get the equation
which was obtained using the symbolic method in the previous lecture, namely

xT 2(x) = T (x)− 1.

This can be rewritten as
T 2(x)− 1

x
T (x) +

1
x

= 0

if we treat T (x) as a variable while thinking of x as fixed we can use the p-q-formula to
get

T (x) =
1±
√

1− 4x
2x

.

To see which of the two signs has to be used for T (x) we consider 2xT (x) = 1±
√

1− 4x
and look at x = 0. For equality we have to use the − sign, hence, we are left with

2xT (x) = 1−
√

1− 4x.
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9.1 q-Enumeration

The Generalized Binomial Theorem

(1 + y)α =
∑
k≥0

(
α

k

)
yk

is valid for 0 < α ≤ 1 (In Analysis this is shown via Taylor expansion). Actually the
case α = 1/2 needed here has been verified in Example 14. We get

2xT (x) = 1− (1− 4x)1/2 = 1−
∑
k≥0

(
1/2
k

)
(−4x)k , i.e., T (x) =

1
2

1 +
∑
k≥0

(
1/2
k

)
4k(−x)k−1


by looking at k = 0 this simplifies to T (x) =

1
2

∑
k≥1

(
1/2
k

)
4k(−x)k−1.

Comparing coefficients we then get:

Cn =
1
2

(−1)
(

1/2
n+ 1

)
(−4)n+1 =

(−1
2

) (1/2)n+1

(n+ 1)!
(−4)n+1

=
−1
2

2n+1

(n+ 1)!

n∏
k=0

((
1
2
− k) · (−2))

= (−1)
2n

(n+ 1)!
(−1)1 · 3 · . . . · (2n− 1)

=
2n

(n+ 1)!
(2n)!

2 · 4 · . . . · 2n
=

2n

(n+ 1)!
(2n)!
2n ·n!

=
1

n+ 1

(
2n
n

)
This is the closed form of the Catalan numbers.

9.1 q-Enumeration

We introduce q-Enumeration, which is an approach similar to generating functions
which gives us refined identities. An example of this will be the q-binomial theorems
which we will get to later. It can also be thought of as a way of more refined counting.
Given a set S of combinatorial objects that can be partitioned into k parts S =

⋃
i∈[k]Si

and a natural ordering S1, ...,Sk then we write the q-polynomial as

S(q) =
k∑
i=1

|Si |qi ,

where the q helps us to distinguish between the sets Si . In the following, we will
distinguish between permutations by partitioning them into groups having the same
parameter, for different kinds of parameters that we will define one by one.
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9. Catalan Numbers and q-Enumeration

First though, we introduce some useful notation, the so called q-bracket:

[n]q = q0 + q1 + q2 + ...+ qn−1 =
1− qn

1− q
.

Mostly we omit the q subscript from the q-bracket because the meaning of the bracket
is unambiguous from the context.

Definition 9.1 (Inversion of a permutation). Let π = (π1, ...,πn) ∈ Sn be a permutation.
An inversion of π is a pair (πi ,πj) with i < j and πi > πj . For the number of inversions
of π we adopt the notation: inv(π) = #(inversions of π).

Remark. Inversions appear in the Leibniz formula for determinants, since

sgn(π) = (−1)inv(π)

Example 17. π = 23154 has inversions (2,1), (3,1), and (5,4)

Theorem 9.2. For fixed n ∈ N it holds that∑
π∈Sn

qinv(π) = [n]q[n− 1]q...[1]q =: [n]!

Proof. The proof is based on a bijection between the two sets

Sn and An = {(a1, ..., an) | 0 ≤ ai < i ∀i}.

Specifically we want to find a bijective function ϕ : An→ Sn, such that

inv(ϕ(a1, ..., an)) = a1 + a2 + ...+ an.

Given π ∈ Sn let ak(π) = #(inversions (k,`) in π), that is ` < k and k is to the left of `.
For fixed k this means 0 ≤ ak(π) < k. From the inversion sequence (a1(π), a2(π), ..., an(π))
we can reconstruct π uniquely, which is best seen when going through a specific
example:

Let

a = (
1
0,
2
1,
3
1,
4
0,
5
4,
6
3,
7
6,
8
2)

Then we can reconstruct π in the following manner

1 (1 has no numbers smaller to its right)
21 (2 has one smaller number to its right)
231 (3 has one smaller number to its right)
2314 (4 has no smaller numbers to its right)
52314 (5 has four smaller numbers to its right)
526314 (6 has three smaller numbers to its right)
7526314 (7 has six smaller numbers to its right)
75263814 (8 has two smaller numbers to its right)
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9.1 q-Enumeration

So φ((0,1,1,0,4,3,6,2)) = (75263814).
Now that we have the bijection we compute

∑
π∈Sn

qinv(π) =
∑
a∈An

q||a||1 =
0∑

a1=0

1∑
a2=0

2∑
a3=0

...
n−1∑
an=0

qa1+a2+a3+...+an

=
( 0∑
a1=0

qa1

)( 1∑
a2=0

qa2

)
...
( n−1∑
an=0

qan
)

= (q0)(q0 + q1)(q0 + q1 + q2)...(q0 + ...+ qn−1)
= [1][2][3]...[n] = [n]!

9.1.1 More permutation statistics

Let π = (π1, ...,πn) be a permutation.

Definition 9.3. The set of descents of a permutation is given by

D(π) = {j | πj > πj+1}.

Major Percy MacMahon, a British officer and mathematician, introduced this concept
in 1913 alongside the major index of a permutation:

maj(π) =
∑
j∈D(π)

j

We will now look at an example for the group S3 of permutations to see the major
index and number of inversions, and how they relate.

n=3 maj inv
1 2 3 0 0
1 3↓2 2 1
3↓1 2 1 2
3↓2↓1 3 3
2 3↓1 2 2
2↓1 3 1 1

Table 9.4: using ↓ where there is a descent

While the major-index and the inversions are not the same, we note that the same
values seem to appear in both columns. This is actually always the case. With the
following theorem swe show that ”the statistics inv and maj are equidistributed”.
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9. Catalan Numbers and q-Enumeration

Theorem 9.4. For all n ∈ N it holds∑
π∈Sn

qinv(π) =
∑
π∈Sn

qmaj(π)

Proof. We prove this through a generating function argument as well as a bijection.
Let

Mn(z) =
∑
π∈Sn

zmaj(π)

We claim that ( 1
1− z

)n
=Mn(z) ·

n∏
k=1

1
1− zk

(9.13)

The claim implies the statement of the theorem as follows:

∑
π∈Sn

qmaj(π) =Mn(q) =
n∏
k=1

1− qk

1− q
=

n∏
k=1

[k]q = [n]q! =
∑
π∈Sn

qinv(π)

So it remains to prove the claim. This is done by bijection. The left-hand side ( 1
1−z )

n

can be interpreted as a generating function: ( 1
1−z )

n =
∑
amz

m. From( 1
1− z

)n
=

(∑
q∈N

zq
)n

=
∑

(q1,...,qn)∈Nn
zq1+q2+...+qn .

we see that am is the number of vectors of n nonnegative integers (q1, ...,qn) with∑n
1 qi =m.
The second factor of the right hand side of equation (9.13) is recognized as the

generating function of integer partitions with parts of size at most n, so we can use
Proposition 5.4:

n∏
k=1

( 1
1− zk

)
=

∑
λ partition into
pieces of size ≤n

z|λ|
5.4=

∑
λ partition

into ≤n pieces

z|λ| =
∑

p1...pn∈Nn
p1≥...≥pn

zp1+...+pn

Therefore, our bijection will be between a vector of nonnegative integers (q1, ...,qn) ∈
Nn and the pair of vectors (π1, ...,πn) ∈ Sn and (p1, ...,pn) ∈ Nn with p1 ≥ p2 ≥ ... ≥ pn ≥ 0,
such that

n∑
i=1

qi =maj(π) +
n∑
i=1

pi .

”→”: Given (q1, ....,qn) there is a unique stable sorting of the entries qπ1
≥ qπ2

≥ ... ≥
qπn where by stable we mean that when qπi = qπj for i < j then πi < πj . This gives
us a unique π = (π1, ...,πn). Next for every j ∈ D(π), that is if πj > πj+1, we get that
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9.1 q-Enumeration

qπj > qπj+1, and we subtract 1 from each qπ1
, ...,qπj , meaning we subtract j in total.

After having done this for every j ∈ D(π) we are left with p1 ≥ p2 ≥ ... ≥ pn as our
resulting sequence, and it holds that

n∑
i1

qi =
∑
j∈D(π)

j +
n∑
i=1

pi =maj(π) +
n∑
i=1

pi

”←”: Given π ∈ Sn and p ∈ Nn with p1 ≥ ... ≥ pn we can get back to q in a similar
manner as above. First for every j ∈D(π) we add 1 to p1, ...,pj adding j in total, which
results in qπ1

, ...,qπn . Then we can just reorder this using π−1 to get q1, ...,qn.

Example 18. Now for a short example that illustrates the bijection used in the proof.
Given q = (5,7,2,7,2) we consider the stable reordering by size (7,7,5,2,2) and the
reoredering permutation π = 2 4↓1 3 5. Since D(π) = {2} we subtracting 1 from the
first two numbers of the reordered vector and get p = (6,6,5,2,2).

Even more permutation statistics

Recall D(π) = {j | πj > πj+1} is the set of descents.

Definition 9.5. Define des(π) = |D(π)| to be the number of descents.
Further define E(π) := {j | πj > j} to be the set of exceedances of π and exc(π) := |E(π)|.

Proposition 9.6. ∑
π∈Sn

qdes(π) =
∑
π∈Sn

qexc(π)

Proof. by bijection: Given π ∈ Sn in one-line notation interpret π as the canonical
cycle decomposition of π̂, then look at π̂−1. We then claim that

des(π) = exc(π̂−1).

A short example will illustrate this

π = 4↓3↓1 7 9↓5↓2 8↓6 des(π) = 5
π̂ = (431)(7)(95286) interpreted as canonical cycle decomp.

π̂−1 = (413)(7)(96825) which in two-line notation is

π̂−1 =
(
1 2 3 4 5 6 7 8 9
3 5 4 1 9 8 7 2 6

)
where the exceedances are underlined

So exc(π̂−1) = 5 and as can be seen from the example there is a clear one-to-one relation
between descents in π and excedences in π̂−1. We omit a formal proof which can be
extracted quite easily from the example.
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9. Catalan Numbers and q-Enumeration

Definition 9.7 (Eulerian polynomial). The Eulerian polynomial is given by

An(q) =
∑
π∈Sn

qdes(π) =
n−1∑
k=0

〈n
k

〉
qk

where
〈
n
k

〉
are called Eulerian numbers.

Some more equidistribution results which can be found (and are defined) in the
literature relate a pair of permutation statistics with another pair:

(maj, des) ∼ (den, exc) [Foata and Zeilberger 1990, Stud. in Appl. Math.]
(maj, exc) ∼ (aid, des) [Linusson, Shareshian and Wachs 2012, J. Comb.]

When given a pair of statistics we talk about bivariate polynomials in the form∑
π

ai1(π)bi2(π). Note that the fact that des and exc are equidistributed does not im-

ply (maj, des) ∼ (maj, exc). The inverse implication would hold, but in fact, the latter is
not true:

π maj des exc
123 0 0 0
132 2 1 1
213 1 1 1
231 2 1 2
312 1 1 1
321 3 2 1

Table 9.5: Distribution of maj, des and exc on S3
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Lecture

10
Eulerian Numbers and q-Binomial
Coefficients

In the last lecture we met Eulerian numbers in the definition of the Eulerian polyno-
mial (Definition 9.7). They are defined as

〈
n
k

〉
B #(π ∈ Sn : des(π) = k), where des(π) is

the cardinality of the descent set D(π) = {j | πj > πj+1} (Definition 9.3). We will now
go on and study Eulerian numbers in more depth.

• Symmetry: 〈n
k

〉
=

〈 n

n− 1− k

〉
this is due to the simple bijection π↔ πrev, i.e., revert π in one-line notation.

• Recursion: 〈n
k

〉
= (k + 1)

〈n− 1
k

〉
+ (n− k)

〈n− 1
k − 1

〉
which is obtained by looking at π ∈ Sn−1 and inserting n at each of the n possible
positions:

– if n is placed between a descending pair or at the end, the number of
descents remains the same (left summand).

– otherwise the number of descents increases by 1 (right summand)

• with that recursion and the obvious initial conditions at n = 0 or n = 1 for all k
we can fill the following table:

k
0 1 2 3 4 5

0 1 0 0 0 0 0
1 1 0 0 0 0 0
2 1 1 0 0 0 0

n 3 1 4 1 0 0 0
4 1 11 11 1 0 0
5 1 26 66 26 1 0
6 1 57 302 302 57 1
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10. Eulerian Numbers and q-Binomial Coefficients

• Generating function (Eulerian polynomial)

An(q) =
∑
π∈Sn

qdes(π) =
n−1∑
k=0

〈n
k

〉
qk

The recursion can be used to establish a functional equation for Eulerian polynomials:

An+1(q) = (1 +nq)An(q) + q(1− q)A′n(q)

Proof. Exercise.

We go on to show an identity involving Eulerian Numbers.

Theorem 10.1 (Worpitzky’s Identity).

xn =
n−1∑
k=0

〈n
k

〉(x+ k
n

)
(10.14)

Proof. This is a polynomial identity. We will show it for x ∈ N; it extends to all of C.
We interpret xn = #(vectors (x1,x2, . . . ,xn) with xi ∈ [x]). There is a unique stable sorting
permutation π ∈ Sn such that

xπ1
≥ xπ2

≥ · · · ≥ xπn and xπj = xπj+1
=⇒ πj > πj+1

Let ` denote the number of cases of equality in the sorted sequence. Then by definition
π has at least ` descents and Z = {xi : i = 1, . . . ,n} has n − ` values. We obtain the
following bijection

(x1, . . . ,xn)←→ [Z,π,A]

where π is the stable sorting permutation and A is a subset of D(π) of size ` which
contains exactly the descents that came from an equality in the sorted sequence.

To show that this is an bijection we have to establish the inverse map. We do this
only by example. Let n = 6 and consider [Z,π,A] where

Z = {2,4,5,7} π = 315642 A = {1,5}

Let us first check that the three tuple conforms to the requirements: Since D(π) =
{1,4,5} we have A ⊆ D(π) and also know ` = |A| = 2 which is consistent with |Z | =
n− ` = 6− 2.

From Z and A we get the sorted sequence 7,7,5,4,2,2. Using π we directly get the
vector (7,2,7,2,5,4).

Given the bijection (x1, . . . ,xn)↔ [Z,π,A] let us think about the number of pairs
(Z,A) which are consistent with π, i.e., which appear with π in in a triple in the image.
Since xi ∈ [x] these pairs depend on x, indeed the conditions are Z ⊆ [x] and A ⊆D(π)
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10.1 q-binomial coefficients and q-binomial theorems

and |Z |+ |A| = n. Hence Z and A can be obtained by choosing an n-element subset of
[x]∪D(π). This shows that:

xn =
∑
π∈Sn

(
x+ des(π)

n

)
Now we can partition the permutations according to the size of their descent set and
obtain:

xn =
∑
π∈Sn

(
x+ des(π)

n

)
=
n−1∑
k=0

〈n
k

〉(x+ k
n

)

Using Worpitzky’s Identity we can derive a connection between Bernoulli numbers
(see Section 8.1) and Eulerian numbers:

1
s+ 1

s∑
`=0

(
s+ 1
`

)
b`(n+ 1)s+1−` (8.12)

=
n∑
k=1

ks

(10.14)
=

n∑
k=1

s−1∑
m=0

〈 s
m

〉(k +m
s

)

=
s−1∑
m=0

〈 s
m

〉 n∑
k=1

(
k +m
s

)

=
s−1∑
m=0

〈 s
m

〉(n+m− 1
s+ 1

)
This again proves that

∑n
1 k

s is a polynomial of degree s+ 1 in n.

10.1 q-binomial coefficients and q-binomial theorems

We have learned about the generalization [n]! of n!, where n! counts permutations and
[n]! counts permutations with a weight expressed in terms of q. In this chapter we
want to look at q-binomial coefficients

[
n
k

]
defined by[n

k

]
B

[n]!
[k]![n− k]!

We know that (
n

k

)
= #(k-subsets of {1, . . . ,n})

= #
(
(w1, . . . ,wn) : wi ∈ {0,1},

∑
wi = k

)
and for such vectors (w1, . . . ,wn) we can talk about inversions. In the following theorem
we use the notation {0,1}nk B {(w1, . . . ,wn) : wi ∈ {0,1},

∑
wi = k}.
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10. Eulerian Numbers and q-Binomial Coefficients

Theorem 10.2. ∑
w∈{0,1}nk

qinv(w) =
[n
k

]

Proof. We will define a bijection between Sn and {0,1}nk × Sk × Sn−k such that if π maps
to (w,σ1,σ2), then inv(π) = inv(w) + inv(σ1) + inv(σ2). This yields

∑
π∈Sn

qinv(π) =
∑

w∈{0,1}nk

qinv(w) ·
∑
σ1∈Sk

qinv(σ1) ·
∑

σ2∈Sn−k

qinv(σ2)

⇐⇒ [n]! =
∑

w∈{0,1}nk

qinv(w) · [k]! · [n− k]!

⇐⇒
[n
k

]
=

∑
w∈{0,1}nk

qinv(w)

The bijection for given π and k works as follows:

• w is 1 in the positions of the k largest elements in π and 0 otherwise.

• σ1 takes the largest k elements from π in their order and normalizes them by
substracting n− k from every element.

• σ2 takes the n− k smallest elements from π in their order.

Example.

π = 75263814 k = 3
w = 10010100
σ1 = 768 7→ 213
σ2 = 52314

A word w ∈ {0,1}nk can also be interpreted as a lattice path from (0,0) to (n − k,k)
where a ’0’ corresponds to a step (1,0) and a ’1’ corresponds to a step (0,1), see
Figure 10.1. Note that inversions of w correspond to squares below the path and vice
versa, hence, inv(w) = area below the path.
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10.1 q-binomial coefficients and q-binomial theorems

n− k

k

0 1 1 0 0 1 0 1 0

Figure 10.1: A lattice path and its corresponding word w ∈ {0,1}94. An inversion of w and the
corresponding square below the path are highlighted in green

Using the path and area model for inversions we can give easy proofs of the following
properties:

• Recursion: [n
k

]
w∈{0,1}nk

=
[n− 1
k

]
w1=0

+ qn−k
[n− 1
k − 1

]
w1=1

• Symmetry: [n
k

]
=

[ n

n− k

]

(0, 0)

(n− k, k)

←→

(0, 0)

(k, n− k)

w ←→ wrev

Figure 10.2: Bijection between {0,1}nk and {0,1}nn−k which shows the symmetry of q-binomial
coefficients

• putting these two together we get[ n

n− k

]
=

[ n− 1
n− 1− k

]
+ qn−k

[n− 1
n− k

]
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10. Eulerian Numbers and q-Binomial Coefficients

we substitute ` = n− k and get[n
`

]
w∈{0,1}n`

=
[n− 1
` − 1

]
wn=1

+ q`
[n− 1
`

]
wn=0

Theorem 10.3 (first binomial theorem).

(1 + qx)(1 + q2x) . . . (1 + qnx) =
n∑
k=0

[n
k

]
q(k+1

2 )xk

Remark. This is a generalization of (1 + x)n =
n∑
k=0

(
n

k

)
xk

Proof of Theorem 10.3.
n∏
i=1

(1 + qix) =
n∑
k=0

bk(q)xk

with
bk(q) =

∑
1≤i1<i2<···<ik≤n

qi1+i2+···+ik =
∑

λ∈P (n,k)

q|λ|

where P (n,k) = {λ = (λ1, . . . ,λk) : 1 ≤ λ1 < λ2 < · · · < λk ≤ n} denotes the set of partitions
into k pairwise distinct parts of size at most n. We claim that

bk(q) =
∑

λ∈P (n,k)

q|λ|
!=

∑
w∈{0,1}nn−k

q(k+1
2 )+area(w) =

[n
k

]
q(k+1

2 ).

We prove the claim using a bijection

λ
∈P (n,k)

←→ wλ
∈{0,1}nn−k

with |λ| =
(k+1

2
)

+ area(wλ) constructed the following way:

• Take the Ferrers diagram of λ and reflect it vertically, this yields piles λ1 < λ2 <
. . . < λk.

• Shift λi down such that i squares of λi ≥ i are below the base line.

• The upper boundary of the piles which remains above the baseline can be
extended with vertical steps to a path corresponding to a wλ ∈ {0,1}nn−k.

Example. Let λ = (7,4,3,1) ∈ P (9,4). The mapping to wλ is illustrated in Figure 10.3
Since the number of squares below the baseline is

∑k
1 j =

(k+1
2
)

this completes the proof
of Theorem 10.3.
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10.1 q-binomial coefficients and q-binomial theorems

7−→

k

wλ

Figure 10.3: The reflected Ferrers diagram of λ on the left hand side and on the right hand
side the path of wλ marked in red and the area below the baseline in green.

10.1.1 Another model for q-binomial coefficients

In order to get to a second q-binomial theorem, we take look at the categories of sets
and vectorspaces and note some analogies:

sets vectorspaces

f : S→ T
maps

φ : V → w
linear maps

subsets subspaces

S ∩ T = ∅ U ∩W = {0}

cardinality dimension

|S ∩ T |+ |S ∪ T | = |S |+ |T | dim(U ∩W ) + dim(U +W ) = dim(U ) + dim(W )

Consider a finite field GF(q) with q elements (note that this is just another notation
for Fq). Let Vn(q) be an n-dimensional vectorspace over GF(q). Then |Vn(q)| = qn since
elements of Vn(q) can be regarded as vectors of length n with entries in {0, . . . , q − 1}.
How many k-dimensional subspaces does Vn(q) have? The answer will be

[
n
k

]
– here q

is the order of the field and hence a fixed number. However, if in this context we find
polynomial identities (polynomials in the variable q), then, since there are infinitely
many primes resp. prime powers q, these identities also hold over N and C.
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Lecture

11
q-Binomial Coefficients, Finite Sets
and Posets

At the end of the previous chapter we have announced a second model for q- binomial
coefficients. We now prove the announced proposition.

Proposition 11.1. The number of k-dimensional subspaces for the n-dimensional vector
space Vn(q) over GF(q) is

[
n
k

]
.

Proof. We start by studying the number of ordered bases of a k-dimensional vector
space Vk(q) i.e., the number of k-tuples (b1, · · · ,bk) of linear independent vectors in
Vk(q). Constructing the tuple element by element we find:

possible choices for b1: each vector v , 0 of Vk(q) qk − 1
possible choices for b2: each v ∈ Vk(q) with v < 〈b1〉 qk − q
possible choices for b3: each v ∈ Vk(q) with v < 〈b1,b2〉 qk − q2

...
...

...
possible choices for bk: each v ∈ Vk(q) with v < 〈b1 b2, · · · ,bk−1〉 qk − qk−1

In total there are
∏k
i=1 q

k − qi−1 ordered bases (b1, · · · ,bk). We can use a similar calcula-
tion to find the number of k-tuples (v1, . . . , vk) of linearly independent vectors in Vn(q):

possible choices for v1: each vector v , 0 of Vn(q) qn − 1
possible choices for v2: each v ∈ Vn(q) with v < 〈v1〉 qn − q
possible choices for v3: each v ∈ Vn(q) with v < 〈v1,v2〉 qn − q2

...
...

...
possible choices for vk: each v ∈ Vn(q) with v < 〈v1 v2, · · · ,vk−1〉 qn − qk−1

In total there are
∏k
i=1 q

n − qi−1 such k-tuples (v1, . . . , vk).

Now every k-tuple of linearly independent vectors in Vn(q) is the basis of some
k-dimensional subspace and we know exactly how many times each such subspace is
counted this way. So for the number of subspaces we get:

∏k
i=1 q

n − qi−1∏k
i=1 q

k − qi−1
=

k∏
i=1

qi−1(qn−i+1 − 1)
qi−1(qk−i+1 − 1)

=
k∏
i=1

qn−i+1−1
q−1

qk−i+1−1
q−1

=
∏k
i=1[n− i + 1]∏k
i=1[k − i + 1]

=
[n
k

]
Hence, the number of number of k-dimensional subspaces for Vn(q) is

[
n
k

]
.
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The next theorem is our second q-generalization of the Binomial theorem. In the
proof we will use q-vectorspaces.

Theorem 11.2.

xn =
n∑
k=0

[n
k

]
(x − 1) · (x − q) · · · · · (x − qn−k−1)

Remark. For q = 1 we get: xn =
∑n
k=0

(n
k

)
(x − 1)n−k which is true, because

xn = ((x − 1) + 1)n T heorem 3.9=
n∑
k=0

(
n

k

)
(x − 1)n−k · 1k =

n∑
k=0

(
n

k

)
(x − 1)n−k

With the Theorem we prove it for every q.

Proof. Let X be a vector space over GF(q) with |X | = x. We will count linear maps
ϕ : Vn(q) −→ X in two different ways.
1st count: Let {b1, · · · ,bn} be a fixed basis of Vn(q). For each bi we can independently
choose its image xi in X. Such a choice of (x1, . . . ,xn) uniquely determines a linear
map ϕ. Hence #maps= |X |n = xn

2nd count: Let U be a subspace of Vn(q). We want to count the linear maps ϕ from
Vn(q) −→ X with U = Ker(ϕ). Let (w1, · · · ,wk) be an ordered basis of U . It can be
extended to an ordered basis (w1, · · · ,wk ,v1, · · · ,vn−k) of Vn(q). Since the kernel U has
dimension k the image of ϕ will have to be of dimension n − k (This is due to the
dimension formula dim(Ker(ϕ)) + dim(Im(ϕ)) = dim(Vn(q))). Consider the images of
v1, · · · ,vn−k:

possible choices for v1: each vector v ∈ X with v , 0 x − 1
possible choices for v2: each vector v ∈ X with v < 〈ϕ(v1)〉 x − q
possible choices for v3: each vector v ∈ X with v < 〈ϕ(v1),ϕ(v2)〉 x − q2

...
...

...
possible choices for vn−k: each vector v < 〈ϕ(v1),ϕ(v2), · · · ,ϕ(vn−k−1)〉 x − qn−k−1

This shows that |{ϕ ∈ Lin(Vn(q),X) : Ker(ϕ) =U }| =
∏n−k
i=1 (x − qi−1). We now put things

together to complete the proof:

xn =
∑

U subspace of Vn(q)

|{ϕ ∈ Lin(Vn(q),X) : Ker(ϕ) =U }|

=
n∑
k=0

[n
k

] n−k∏
i=1

(x − qi−1) =
n∑
k=0

[n
k

]
(x − 1) · (x − q) · · · · · (x − qn−k−1)
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11.1 Finite sets and posets

We begin this section with a little extremal problem regarding families of sets.
Given a set N with |N | = n, let A ⊆ Pot(N ) be an intersecting family, i.e., any two

elements of A intersect.
The question is: how large can A be?
It is easily seen that |A | ≤ 1

2 |Pot(N )| = 2n−1. Indeed, if we pair the elements of Pot(N )
into pairs {A,A}, where A = N −A, then A can only contain one set from each pair.
Therefore, |A | ≤ 1

2 |Pot(N )| = 2n−1.
Actually the inequality is tight. An example attaining equality is the star family

Ax := {A ∈ Pot(N ) : x ∈ A}. Since x is contained in every set in Ax the family is
intersecting. Clearly |A| = 2n−1.

Here is another construction which works for odd n: A := {A ∈ Pot(n) : |A| > n
2 }. For

n even the same idea of just taking large sets can be used. However, additional care
is needed because the sets of cardinality n

2 choosen for A have to be an intersecting
family.
Example. For N = {1,2,3} the first proof (x = 1) gives A1 = {{1}, {1,2}, {1,3}, {1,2,3}} and
the second proof gives us A = {{2,3}, {1,2}, {1,3}, {1,2,3}}.

∅

1

2
3

1,2 2,3

1,3

1,2,3

Figure 11.1: drawing (diagram) of the Boolean lattice B3

Definition 11.3 (Poset). P = (X,≤) is a partially ordered set (or poset for short) if X is
some ground set and ≤ a partial order, i.e., a binary relation on X with:

• reflexivity: ∀x ∈ X : x ≤ x

• transitivity: ∀x,y,z ∈ X : x ≤ y,y ≤ z⇒ x ≤ z

• asymmetry: ∀x,y ∈ X : x ≤ y,y ≤ x⇒ x = y

Any partial order comes with a strict order relation < defined by x < y⇔ x ≤ y ∧ x , y.
This relation can be equivalently defined by transitivity and irreflexivity, the opposite
of reflexivity.
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11.1 Finite sets and posets

Remark. Talking about partial orders means that there may be elements x,y ∈ X which
are incomparable with the respective order ≤ or <. We denote this as x||y. If the
elements are comparable but we do not want to specify their order, we write x ∼ y.

Example 19.

• A set of distinct points on the real line can be ordered from left to right. This is
a total order or linear order, because any two elements are comparable.

Figure 11.2: Points on the real line

• A set of intervals on the real line induces an interval order. The order relation is
given by I < J if and only if sup(I) < inf(J).

I J

Figure 11.3: I and J are comparable intervals on the real line.

• A family A ⊆ Pot(N ) comes with a containment order, i.e., the order relation
A ≤ B⇔ A ⊆ B. In fact containment orders are universal in the following sense:
For every P = (X,≤) with finite X there is a family A so that (X,≤) and (A ,⊆)
are isomorphic.

Definition 11.4 (Lattice). A poset P = (X,≤) is a lattice if ∀x,y there is a z such that
x ≤ z and y ≤ z and ∀z̃ with x ≤ z̃ and y ≤ z̃ we have z ≤ z̃. The element z is the join
(supremum) of x and y. Dually ∀x,y there is a z such that z ≤ x and z ≤ y and ∀z̃ with
z̃ ≤ x and z̃ ≤ x we have z̃ ≤ z. The element z is the meet (infinum) of x and y.

Example 20.

• Boolean Lattice BN : The elements of the Boolean lattice BN are all subsets of N ,
with the containment order. Here join(A,B) = A

⋃
B and meet(A,B) = A

⋂
B.

• Divisor Lattice Dn: The elements of the divisor lattice Dn are the integers that
divide n, the order relation is given by division, i.e., a ≤ b if and only if a divides b.
The lattice operations are: join(a,b) = least common multiple of a and b and
meet(a,b) = greatest common divisor of a and b.

Visualizing posets:
The drawing of the Boolean Lattice given in Figure 11.1 has the property that

subsets A and B of {1,2,3} are in the order relation A ⊆ B if there is an upward path
from A to B in the drawing. For example A = {∅} ⊆ B = {2,3}, and {∅} → {2} → {2,3} is
an upward path. For these upward paths to exist, only a certain subset of relations is
important to draw as an upward edge:
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11. q-Binomial Coefficients, Finite Sets and Posets

Definition 11.5. A pair (x,y) in a poset P = (X,≤) is a cover if x < y and there are no
elements in between (∀z : (x ≤ z ≤ y ⇒ z = x or z = y). Being a cover is denoted as
x ≺ y.

The typical visual representation of posets is the Hasse diagram. The diagram of
P = (X,≤) has a point (bullet) representing each element of X and for each cover
relation a ≺ b there is an upward edge, this means that ay < by when ay and by are the
y-coordinates of a and b respectively.

Note that x ≤ y in P if and only if there is an upward path from x to y in the diagram
of P .

a

b

c

d

In the poset given by the diagram in the figure we have a ≺ b ≺ c ≺ d, hence, a ≤ d.
Between the two blue points there is no upward path, hence, they are incomparable.

We continue with some important definitions. Let P = (X,≤) be a poset:

Definition 11.6. F ⊆ X is a filter (up-set) if x ∈ F and x ≤ y⇒ y ∈ F
Definition 11.7. I ⊆ X is a ideal (down-set) if x ∈ I and y ≤ x⇒ y ∈ I
Definition 11.8. A ⊆ X is a antichain if ∀x , y ∈ A neither x ≤ y nor y ≤ x , i.e., x||y.

Definition 11.9. C ⊆ X is a chain if ∀x,y ∈ A : x ≤ y or y ≤ x, i.e., x ∼ y.

If A is an antichain, then FA = {y ∈ X : ∃a ∈ A with a ≤ y} is a filter. Conversely, if F
is a filter, then A = Min(F) is an antichain with FA = F, where we define the set of
minima of a filter as Min(F) = {x ∈ F | @y ∈ F : y < x}. A dual situation is true for ideals:
If A is an antichain, then IA = {y ∈ X : ∃a ∈ A with y ≤ a} is a ideal. Conversely, if I is an
ideal, then A = Max(I) is an antichain with IA = I . Here Max(I) = {x ∈ I | @y ∈ I : y > x}.

We continue with some easy observations:

• If A is an antichain and C a chain of P , then |A
⋂
C| ≤ 1. This follows from the

definition, because for any two elements x,y of P either x||y or x ∼ y.

• If C is a chain in Bn then |C| ≤ n+ 1

• The Boolean lattice Bn has an antichain of size
( n
b n2 c

)
. An example of such an

antichain is A = {A ⊂ [n] : |A| = bn2c}, the family A has
( n
b n2 c

)
elements and any two

sets in A are incomparable, because they have the same size.

Theorem 11.10 (Sperner 1928). If A is an antichain in Bn, then |A| ≤
( n
b n2 c

)
.

In future lectures we will see various proofs of this theorem.
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Lecture

12
Sperner’s Theorem and Intersecting
Families

We will start this lecture by proving Sperner’s theorem mentioned in lecture 11, and
then continue by investigating intersecting families further with the help of shadows.

Theorem 12.1 (Sperner’s theorem). Let A be an antichain in Bn, then

|A| ≤
(
n

bn/2c

)
Proof. Let π = (π1, . . . ,πn) ∈ Sn be a permutation. Let Ak := {π1, . . . ,πk} be the set given
by the initial segment of π of length k ∈ N, then we say that π meets Ak.

Given A ⊆ [n] with |A| = k we count the number of permutations that meet A.

#(π ∈ Sn, π meets A) =
∑
π∈Sn

δ{π meets A} = k!(n− k)!

where the k! comes from the possibilities of arranging the initial segment of length k
using the elements of A and the (n− k)! comes from arranging the remainder.

Now let A be an antichain. For every π ∈ Sn the sets met by π form a chain
∅ = A0 ( A1 ( · · ·( An = {π1, . . . ,πn}. Since a chain and an antichain can share at most
one element we obtain that every π ∈ Sn meets at most one A ∈ A. This implies∑
A∈A
|A|!(n− |A|)! =

∑
A∈A

#(π ∈ Sn : π meets A) =
∑
π∈Sn

#(A ∈ A : π meets A) ≤ n! (12.15)

Define
pk := pk(A) := #(k-sets in A)

then from Equation (12.15) we get

n∑
k=0

pkk!(n− k)! ≤ n! ⇐⇒
n∑
k=0

pk(n
k

) ≤ 1 (LYM)

The second formula in the previous line (LYM) is known as the LYM-inequality, which
is short for Lubell, Yamamoto and Meshalkin, three researchers who discovered
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12. Sperner’s Theorem and Intersecting Families

the inequality independently from each other in the 1950-60s. Using the fact that(n
k

)
≤

( n
bn/2c

)
for every k ∈ [n] we conclude that

n∑
k=0

pk( n
bn/2c

) ≤ 1 ⇐⇒
n∑
k=0

pk ≤
(
n

bn/2c

)
The definition of pk implies that

∑n
k=0pk = |A|, concluding the proof.

We continue by investigating the case of equality in Sperners theorem. For the last
inequality |A| =

∑n
k=0pk ≤

( n
bn/2c

)
to be tight, we need pk = 0 for all k with

(n
k

)
<

( n
bn/2c

)
because otherwise

n∑
k=0

pk( n
bn/2c

) < n∑
k=0

pk(n
k

) ≤ 1.

n is even: There is a unique maximal binomial coefficient
( n
n/2

)
. Hence, pk = 0 for all

k , n
2 . This implies that the maximum antichain A is just the ”middle rank” of Bn.

n is odd: Then n = 2s+ 1, so A lives in the two middle ranks, i.e. pk = 0 except for
k ∈ {s, s + 1} for the aforementioned reasons. Suppose that it would live in both, i.e.
we have X ∈ A in the s-rank and Y ∈ A in the (s+ 1)-rank. Then we get a path in the
boolean lattice from X to Y by alternately removing and adding elements to the sets
X and Y . But then no two consecutive sets on that path can be contained in A as they
would form a two-chain. Now our path from X to Y has odd length as we move from
the s-rank to the (s + 1)-rank by alternating between them. Thus there will be two
consecutive vertices – i.e. intermediary sets – on this path that are both not contained
in A. Since they are consecutive vertices in the path, there is a π ∈ Sn that meets both
of them which is part of the n! permutations but which is not covered by the sum∑
A∈A|A|!(n− |A|)! and thus we get a strict inequality in Equation (12.15). Therefore, in

the odd case the only maximum antichains are
(

[n]
bn/2c

)
and

(
[n]
dn/2e

)
.

12.1 Finding large intersecting sets

Next we try to find large intersecting sets in
([n]
k

)
. Only the case k ≤ n/2 is of interest

since for k > n/2 any two k-element subsets of [n] intersect.

Theorem 12.2 (Erdős-Ko-Rado). For any intersecting family F ⊆
([n]
k

)
with n ≥ 2k,

|F | ≤
(
n− 1
k − 1

)
The proof of this theorem relies on counting cyclic permutations, so for the sake of

readability we define two new notions needed for the proof beforehand.

76



12.1 Finding large intersecting sets

Figure 12.1: A cyclic representation of a permutation σ ∈ S11 marked by the 11 vertices and
edges between them. Two overlapping 4-arcs are drawn in purple and blue and a gap is
highlighted in green.

Definition 12.3 (k-arc and gap of a cyclic permutation). Let σ ∈ Sn be a cyclic permu-
tation of [n], that is σ = (σ1, . . . ,σn) in cycle notation. Then a k-arc τ jk of σ is a k-tuple
given by (σj mod n, . . . ,σ(j+k) mod n) for some j ∈ [n].

A gap of τ jk is a pair of two consecutive vertices in τ jk.

The definition is best understood by looking at Figure 12.1, where one can see a
cyclic permutation as vertices σ1, . . . ,σn cyclically arranged along a circle with respect
to the cyclic permutation. A k-arc can be thought of as a bent interval covering k
consecutive vertices along the circle, and a gap can be thought of as an edge between
two consecutive vertices.

Proof of Theorem 12.2. Let F ⊆
([n]
k

)
be an intersecting family of k-sets with n ≥ 2k.

Note that there are (n− 1)! cyclic permutations of [n] permutations: just fix 1 as the
first element of the cycle and consider rearrangements of the others. Let σ ∈ Sn be a
cyclic permutation of [n] and let A be the family of k-arcs of σ that belong to F .

We claim that
|A| ≤ k

To see this fix a set A ∈ A, then for any other B ∈ A with B , A we have that |B| = k = |A|
as well as A∩B , ∅ since they come from an intersecting family, i.e. the k-arcs overlap.
A and B cannot start in the same vertex because they have the same size so they would
be equal. Thus one of the two, say B, must start in a gap of the other. But A only has
k − 1 gaps and as we have just seen each gap can have at most one set of A starting in
it. This implies that A ≤ k, since A ∈ A with at most k − 1 more sets, proving the claim.

We will count the pairs (A,σ ) where σ is a cyclic permutation and A ∈ F is a k-arc
of σ . We count them in two ways:
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(1)
∑

σ cyclic permutation

∑
A∈F

δ{Ak-arc in σ } ≤
∑

σ cyclic permutation

k = (n− 1)!k

(2)
∑
A∈F

∑
σ cyclic permutation

δ{Ak-arc in σ } =
∑
A∈F

k!(n− k)! = |F |k!(n− k)!

For (2), we used that we can assume that the first element of the cyclic permutation
is also the first one of A and therefore the first k elements and also the last n − k
elements are determined by A but the order within each of the two sets can be chosen.
Combining (1) and (2) we get

|F | ≤ (n− 1)!
(k − 1)!(n− k)!

=
(
n− 1
k − 1

)
proving the theorem.

Remark. The upper bound from Theorem 12.2 is tight since for x ∈ [n] we have a
star-family Fx := {A ∈

([n]
k

)
| x ∈ A}, which by construction is an intersecting family with

|Fx| =
(n−1
k−1

)
.

On our journey through the world of combinatorics we will often look for families
of maximum size with a certain property as well as for maximal families with a certain
property, making a distinction between maximum and maximal objects.

Definition 12.4 (Maximum and maximal). The maximum family with a certain prop-
erty is the biggest family with this property by cardinality. A maximal family with
some property, is a family with this property, such that adding any object to the family
will cause it to lose the property.

The Erdős-Ko-Rado Theorem 12.2 talks about maximum intersecting families of
k-sets. They are the largest maximal intersecting families as well. On the other end, it
is interesting to construct small maximal intersecting families of k-sets.

Example 21 (Maximal intersecting family from projective planes). Let k be some prime
power, then there exists a finite projective plane of order k. This plane has n = k2 +k+1
points. Denote by P the set of points and by L the set of lines of such a projective
plane. We know that |P | = n = |L|, each line L ∈ L contains k + 1 points and each point
p ∈ P belongs to k + 1 lines.

We claim that L is a maximal (k + 1)-intersecting family. To see this let E < L be a
collection of points with |E| = k + 1. We will show that L∪ E is not an intersecting
family. Let x,y ∈ E be two distinct points. In L there is a line Lxy containing both.
Since E < L there is some z ∈ Lxy \E. There are (k + 1) lines passing through z so k of
these are not Lx,y . Since two lines cross in exactly one point these lines are disjoint in
P \{z}. Now if E∪L would be intersecting, E would have at least one point in common
with each of these k lines, plus the two initial points x,y ∈ Lxy . Thus |E| ≥ k + 2 which
is a contradiction.
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12.2 Shadows and intersecting families

Inspired by the illustration with different ranks of Bn, we now introduce the notion of
shadows that will lead to a second proof of Sperner’s Theorem 12.1. In essence this is
the original proof of Sperner.

Definition 12.5 (Up- and Down-shadows). Let B ⊆
([n]
k

)
for some n,k ∈ N. Then we

define the down-shadow of B – denoted 4B – as

4B := {A | |A| = k − 1, ∃B ∈ B with A ⊆ B}

The up-shadow of B – denoted 5B – is defined as

5B := {A | |A| = k + 1, ∃B ∈ B with B ⊆ A}

Remark. Think of the triangle in the notation as a light-source once shining down and
once up to get the respective shadows.

Unsurprisingly the size of the up- and down-shadows is related to the size of B.

Lemma 12.6. Let n,k ∈ N and B ⊆
([n]
k

)
, then the up- and down-shadow satisfy the following

inequalities:

(1) |4B| ≥ k

n− (k − 1)
|B|,

(2) |5B| ≥ n− k
k + 1

|B|

Proof. We double count the pairs (A,B) with B ∈ B and A in its respective shadow.
So assume that A is in the down-shadow of B. For each B ∈ B we can remove any of

the k elements of B to get an A in the shadow. This shows that the number of pairs
(A,B) is

#(A,B) = k|B|
To a given set A of size k − 1 which belongs to 4B we can add n − (k − 1) different
elements to get a k set containing A. Each of these k-sets may belong to B. Hence,

#(A,B) ≤ (n− (k − 1)) |4B|

Putting things together we get

k|B| = #(A,B) ≤ (n− (k − 1))|4B| ⇐⇒ k|B|
n− (k − 1)

≤ |4B|

An analogous argument counting the pairs (A,B) with A in the up-shadow by
removing/adding elements to A and B respectively in the same fashion as we just did,
we get that

(n− k)|B| = #(A,B) ≤ (k + 1)|5B|.
This then implies that n−kk+1 |B| ≤ |5B|, finishing the proof.
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12. Sperner’s Theorem and Intersecting Families

Corollary 12.7. For k ≥ n+1
2 we get |4B| ≥ |B| and for k ≤ n−1

2 we get |5B| ≥ |B|.

Proof. Plug the values for k into the inequality of Lemma 12.6.

We are now ready for the proof of Sperner’s theorem.

Proof 2 of Theorem 12.1. Let A be an antichain in Bn and denote by Ai :=A∩
([n]
i

)
the

elements of A from the i-th rank. Fix j1, j2 to be minimal and maximal respectively
such that Ajk , ∅. We analyse two cases for the values of jk, in order to prove that we
can assume j1 = j2 to be the middle rank, which for odd n comes back to choosing
either n−1

2 or n+1
2 which are both equally valid. In the cases we will refer to jk as j since

it is clear what we mean.
If j = j1 ≤ n−1

2 define
A′ :=A−Aj +5Aj

See Figure 12.2 for a schematic representation. The up-shadow 5Aj contains at least
as many elements as Aj for j < n−1

2 (Corollary 12.7). Moreover, A contains no sets
which are proper supersets of elements of Aj in particular A∩5Aj = ∅. Hence A′ is
an antichain and |A′ | ≥ |A|.

So we found an antichain A′ with A′i :=A′ ∩
([n]
i

)
= ∅ for all i ≤ j that is at least as

large as A, hence we can assume that j > n−1
2 .

If j = j2 ≥ n+1
2 we consider

A′ :=A−Aj +4Aj
again this is an antichain and |A′ | ≥ |A|

Together this shows that there is a maximum antichain which is a subset of rank bn2c,
i.e., for every antichain A we have |A| ≤

( [n]
b n2 c

)
. This was the claim of the theorem.

Aj

5Aj

Aj

4Aj

j ≥ n+1
2

j < n−1
2

Figure 12.2: A schematic representation of the Aj and the respective shadows.
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12.3 Colex order, cascading representation and the

Kruskal-Katona theorem

In this section we prepare for the formulation of the Kruskal-Katona theorem which
gives a precise lower bound on the size of the downshadow of a family of k-sets.

Definition 12.8 (Colex order). Let A,B ⊂ N be two finite sets. In the colex order A
preceeds B, denoted A < B if and only if max(A4B) ∈ B. Here A4B := (A \B)∪ (B \A) is
the symmetric difference.

Observation. With a finite subset A ⊂ N we associate its characteristic vector, this is
an infinite boolean vector filled with 0’s, having a one at the i-th position if i ∈ A. For
example the set A = {1,2,6} will be represented by (0,1,1,0,0,0,1,0,0, . . .). Using this
representation it is easy to determine whether A < B or not: just write them both as
their respective boolean vectors and compare their 1-entries from right to left, where
1’s at the same position in both vectors are ignored and the one having the rightmost
remaining 1 is colex larger. For example let

A = (1,0,0,1,1,1,0, . . .) = {0,3,4,5}
B = (0,1,0,1,1,1,0, . . .) = {1,3,4,5},

thenA < B since they share the underlined 1’s and the bold 1 in B is the at the rightmost
position where they disagree.

One immediately observes that determining A < B using this representation comes
back to determine whether the binary number encoded by the boolean vector repre-
senting B is bigger than the one representing A, i.e.

A = (1,0,0,1,1,1,0, . . .)2 = 57 < 58 = (0,1,0,1,1,1,0, . . .)2 = B.

So to get the colex order we can use the standard order for numbers 0 < 1 < 2 < 3 < · · · ,
convert them to their binary representation and use the binary representation to get
the subsets of N back:

0 < 1 < 2 < 3 < · · ·
⇐⇒ (0,0,0,0, . . .)2 < (1,0,0,0, . . .)2 < (0,1,0,0, . . .)2 < (1,1,0,0, . . .)2 < · · ·
⇐⇒ ∅ < {0} < {1} < {0,1} < · · ·

For us, the colex order on k-subsets of N for some fixed k ∈ N will be of special
relevance; that is binary numbers having exactly k nonzero entries. The colex order on
k-subsets can be used to determine the k-cascade representation of numbers.

Proposition 12.9. For every k,m ∈ N there exists a unique strictly monotone sequence
ak > ak−1 > . . . > as ≥ s ≥ 1 for some s < k and ai ∈ N such that

m =
(
ak
k

)
+
(
ak−1

k − 1

)
+ . . .+

(
as
s

)
This is called the k-cascading representation of m.
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12. Sperner’s Theorem and Intersecting Families

Proof. The proof is by induction over m. If m = 1, then
(k
k

)
does the trick for any k ∈ N.

This is also the only possibility, since each summand of the wanted sum is at least 1.
Given m > 1, k ∈ N, we can define

ak = max
{
t :

(
t

k

)
≤m

}
, and m′ =m−

(
ak
k

)
If m′ = 0, we are done. Otherwise since m′ < m, it has a unique (k − 1)-cascading

representation using the numbers ak−1 > · · · > as ≥ s ≥ 1:

m′ =
(
ak−1

k − 1

)
+ . . .+

(
as
s

)
⇒ m =

(
ak
k

)
+ . . .+

(
as
s

)
To prove that this sum is a k-cascading representation of m, we just need to show

ak > ak−1. But if ak ≤ ak−1, we would get

m ≥
(
ak
k

)
+
(
ak−1

k − 1

)
≥

(
ak
k

)
+
(
ak
k − 1

)
=

(
ak + 1
k

)
This contradicts the choice of ak.
For uniqueness of this representation, we just have to prove that we cannot choose

any other value for ak, because once it is chosen, the values for the rest of the sum
m′ are unique by induction. Assume therefore we would choose ak not maximal but
smaller. Then

m ≥
(
ak + 1
k

)
=

(
ak
k

)
+
(
ak
k − 1

)
=

(
ak
k

)
+
(
ak − 1
k − 1

)
+
(
ak − 1
k − 2

)
= · · · =

k−1∑
i=0

(
ak − i
k − i

)
+
(
ak − k + 1

0

)

m >
k−1∑
i=0

(
ak−i
k − i

)
This is the largest sum that can be built though if ak is its largest value, so no k-
cascading representation of m exists that starts with

(ak
k

)
.

The idea behind determining the k-cascading representation for m from the colex
order is the following: Write the firstm+1 subsets ofN of size k in binary representation
in the colex order into a table from left to right, such that each binary number is written
in one column from top to bottom as seen in Example 22. Note that for any t the first(t
k

)
entries that the table contain exactly k ones out of the first t bits. The idea is to

successively choose blocks of the form
(ar
r

)
for r = k downto 1 up to the position m: We

look for the lowest one in the (m+ 1)-th column. We go back left from this 1 until we
see a zero and then jump to the next higher row say row t. This determines a block of
size

(t
k

)
as there are k ones distributed among t bits in every possible way. Then we

continue with the other ones in the representation ofm+1, choosing blocks with (k−1)
ones from among the columns after the previously chosen block and proceed with
k − 2, etc. Since the (m+ 1)th column is larger than all previous ones in colex order,
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12.3 Colex order, cascading representation and the Kruskal-Katona theorem

every column is put in one of the up to k blocks, namely in the one corresponding to
the downmost 1 of column m+ 1 which it does not have as well. The ordering by colex
order also assures, that the row left of one of these ones consists of only zeros then
only ones from the end of the last chosen block towards the right end at column m.
Example 22 (3-cascading representation). The following figure represents a table of
the 3-subsets of N in binary notation written in columns with respect to their colex
order. Let us look at m = 15 for example.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1

1

1

0

1

1

0

1

1

0

1

1

0

1

1

1

1

1

0

0

10000

1

1

1

0

0

0

1

1

0

1

1

0

0

1

1

0

1

0

1

1

0

0

1

1

1

1

1

1

0

0

0

0000000000

1

0

1

0

0

1

0

1

1

0

0

1

1

0

0

1

0

1

0

1

0

1

0

1

0

0

1

1

0

1

15 = 10 + 3 + 2 =
(
5
3

)
+

(
3
2

)
+
(
2
1

)
Figure 12.3: Determining the 3-cascading representation of m = 15 using the colex order. The

boxes coming from the respective ones in the m+ 1 = 16th column are marked by the same
color. The n-th column represents the n-th 3-subset in the colex order.

We finish this lecture by stating the Kruskal-Katona theorem. We will give no proof
of this theorem but in the next lecture we will see a proof of a slightly weaker version
of the theorem due to Lovász.

Theorem 12.10 (Kruskal-Katona). Let k ∈ N and choose a family F ⊂
(N
k

)
. Let the unique

k-cascading representation for |F | use ak > ak−1 > . . . > as ≥ s ≥ 1, i.e.

|F | =
(
ak
k

)
+
(
ak−1

k − 1

)
+ . . .+

(
as
s

)
.

Then the size of the down-shadow of F satisfies the following inequality:

|4F | ≥
(
ak
k − 1

)
+
(
ak−1

k − 2

)
+ . . .+

(
as
s − 1

)
.

Remark. We indicate by example how to show that the lower bound for the down-
shadows is tight for every k and |F |: For k = 3 and F = {{0,1,2}, {0,1,3}, . . . , {1,3,5}}
which is the union of the first 15 sets in colex order (that is up to position m = 15 in
Figure 12.3), we have 15 =

(5
3
)

+
(3
2
)

+
(2
1
)

as seen. For this example we get

|4F | = |{{0,1}, {0,2}, . . . , {3,5}} ∪ {{1,6}, {2,6}, {3,6}} ∪ {{4,6}}| =
(
5
2

)
+
(
3
1

)
+
(
2
0

)
= 14

83



Combinatorics, TU Berlin, SoSe 2021

Lecturer: Stefan Felsner
Transcript: Leon Ludwig
Date: 2021/05/27

Lecture

13
The Lovász Version of Kruskal-Katona

In this lecture we prove the simplified version of the Kruskal-Katona theorem due to
Lovász as mentioned at the end of the last lecture.

Theorem 13.1 (Lovász version of Kruskal-Katona). Let k ∈ N and let F be a family of
k-sets. Let |F | =

(x
k

)
for x ∈ R, x ≥ k, where(

x

k

)
=
x(x − 1)...(x − k + 1)

k!

Then the down-shadow of F satisfies the following inequality:

|∆F | ≥
(
x

k − 1

)
(13.16)

Remark. One might want to check whether we can always find an x ∈ R such that
|F | =

(x
k

)
holds. This is the case, since the roots of the polynomial x(x−1)...(x−k+1)

k! are
given by 0,1, ..., k−1 and the polynomial is strictly monotonically increasing for values
of x larger than k − 1. So for any value of |F | we find a unique value of x ≥ k − 1 such
that |F | =

(x
k

)
. Since

(k
k

)
= 1 it makes sense to look at x ≥ k.

The proof will require some understanding of a technique called shifting. The idea
of shifting is to reduce the largest colex order number of a set in the family of k-sets.
The formal definition of shifting is as follows:

Given a family F ⊆
(N
k

)
of k-sets and i ∈ N, the i-shift of F ∈ F is given by

Si(F) =

F − i + 1 if i ∈ F, 1 < F, F − i + 1 < F
F otherwise

The i-shift of the family F is obtained by applying the sh ift operator to each of its
members:

Si(F ) = {Si(F) | F ∈ F }.

In the case that Si(F) = F − i + 1 we say that the shift was successful, and in the case of
Si(F) = F we say that it was not. For example if F = {2,4,6} ∈ F then S6(F) = {1,2,4} if
this set is not already in F , otherwise S6(F) = F.

Remark. In the original proof of Kruskal-Katona a more general shift Sij is used which
tries to replace F by F − j + i.
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13. The Lovász Version of Kruskal-Katona

Observation. |Si(F )| = |F |, since we do not introduce duplications and therefore gain
as many sets as we lose.

Lemma 13.2.
∆Si(F ) ⊆ Si(∆F )

In other words, the size of the down-shadow is not increasing when shifting, and by
repeating this again and again we get a smaller and smaller set, for which we will then
show the inequality in Equation (13.16).

Proof of Lemma 13.2. Consider E ∈ ∆Si(F ). Then there exists F ∈ F such that E =
Si(F) − x, where x is the element that was ”deleted” when going from Si(F ) to its
down-shadow ∆Si(F ). Now we consider four different cases depending on whether i
and 1 belong to Si(F).

• 1, i < Si(F): Then Si(F) = F, since if Si(F) and F are different, then 1 is in Si(F).
So E = F − x ⊆ F, which means E ∈ ∆F. Also i < E, so Si(E) = E. This implies
E ∈ Si(∆F ).

• 1, i ∈ Si(F): Then i ∈ Si(F) implies that Si(F) = F, because a sucessful shift would
have removed i. So E = F − x ⊆ F, which means E ∈ ∆F, now we look at two
subcases:

– if x , 1: Then 1 ∈ E which means Si(E) = E and then as before E ∈ Si(∆F ).

– if x = 1: Then E′ = E − i + 1 ∈ ∆F blocks a sucessful shift of E, therefore,
E ∈ Si(∆F ).

• i ∈ Si(F),1 < Si(F): Again 1 not being in Si(F) immediately implies Si(F) = F.
But then we get i ∈ F and 1 < F which are two of the conditions that should allow
a shift. This means that F was blocked by F′ = F − i + 1 ∈ F . Now E = F − x ⊂ F
which implies E ∈ ∆F. Again we look at two subcases:

– if x = i: Then i < E which implies Si(E) = E which means E ∈ Si(∆F ).

– if x , i: Then E is a candidate for shifting, since i ∈ E and 1 < E. However
E′ = E − i + 1 ∈ ∆F′ blocks E from being shifted. So Si(E) = E which means
E ∈ Si(∆F ).

• i < Si(F),1 ∈ Si(F): Then i < E and therefore Si(E) = E. Thus it is enough to
prove E ∈ ∆F because then E ∈ Si(∆F ) as required. We look at some subcases

– if F did not shift: Then Si(F) = F and by definition E ∈ ∆F.

– if F did shift: Then Si(F) = F − i + 1.
If x = 1 then we get E by removing i from F, which implies E ∈ ∆F.
If x , 1 we consider E′ = E − 1 + i = F − x so E′ ∈ ∆F, i ∈ E′,1 < E′. Then Si
tries to map E′ to E. If it succeeds then E ∈ Si(∆F ), since E′ ∈ ∆F. However
if it fails then because it is blocked by E ∈ Si(∆F ).
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13. The Lovász Version of Kruskal-Katona

In all four cases we have shown that every E ∈ ∆Si(F ) is also in Si∆(F ), this concludes
the proof.

Despite the length and technicality of the proof the important takeaway is the
statement of the lemma itself. We wish to apply this shifting repeatedly, but not
indefinitely, so we need a definition for the point, where we can stop.

Definition 13.3. A family F is called stable if Si(F ) = F for all i ≥ 2.

Lemma 13.4. Given a finite family F ⊆
(N
k

)
we can convert F into a stable family G via

shifting. These will have the properties that

|F | = |G| and |∆G| ≤ |∆F |

Proof. The two stated properties follow from the above observation and Lemma 13.2,
respectively. We have to show that we reach a stable family: Each successful shifting
operation increases the number of sets containing 1 by at least 1. Meaning that we can
only do a finite number of shifts and thus reach a stable family.

From now on we assume that F is stable. We partition F into two sets F = F0 ∪F1:

F0 = {F ∈ F | 1 < F}
F1 = {F ∈ F | 1 ∈ F}

Also we define
F ′1 := {F − 1 | F ∈ F1}

this is a subset of the down-shadow of F1 and hence of F .

Lemma 13.5.
∆F0 ⊆ F ′1

Proof. Let E ∈ ∆F0, so E will be of the form E = F − x with F ∈ F0 and x , 1. Since F is
stable Sx(F) = F. But since x ∈ F and 1 < F then Sx(F) is blocked by F − x + 1 ∈ F . By
definition F − x+ 1 ∈ F1 and we conclude that E = F − x ∈ F ′1 .

Lemma 13.6.
|∆F | = |F ′1 |+ |∆F

′
1 |

Proof. Since F is a union of F0 and F1 the same holds for the down shadows:

∆F = ∆F0 ∪∆F1

By Lemma 13.5
∆F0 ⊆ F ′1 ⊆ ∆F1

Hence ∆F = ∆F1.
We introduce a new set F ′′1 := {D+1 |D ∈ ∆F ′1 }which essentially removes an element

and then puts the 1 back in, making the elements the same size as those in F ′1 .

Claim: ∆F1 = F ′1 ∪̇F
′′

1

This is a disjoint union of sets in F ′1 which do not contain a 1, and sets in F ′′1 which do
contain a 1. To prove equality we look at the two inclusions:
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13. The Lovász Version of Kruskal-Katona

” ⊇ ” : F ′1 ⊆ ∆F1 by definition. Let E ∈ F ′′1 this means that E =D + 1 for some D ∈ ∆F ′1
and therefore there is an F ∈ F1 such that E =D + 1 = (F − 1)− x + 1 = F − x ∈ ∆F1
for some x , 1. So F ′1 and F ′′1 are subsets of ∆F1 and so is their union.

” ⊆ ” : Let E = F − x ∈ ∆F1. If x = 1 then E ∈ F ′1 . Now if x , 1 then F ∈ F1 implies
F − 1 ∈ F ′1 and then further removing the x we get F − 1 − x ∈ ∆F ′1 . Finally
reintroducing the 1 yields E = F − x ∈ F ′′1 . So E is either in F ′1 or in F ′′1 .

Now that we have proved the claim, the rest of the proof follows immediately from
the fact that |∆F ′1 | = |F

′′
1 |.

Finally we get to the proof of Theorem 13.1 which, briefly summarized, states that

F ⊆
(
N
k

)
, |F | =

(
x

k

)
, x ≥ k =⇒ |∆F | ≥

(
x

k − 1

)
Proof. We do the proof by induction over k ∈ N. For k = 1 we get

|F | =m =
(
m

1

)
so x =m =⇒ ∆F = {∅} and |∆F | = 1 =

(
m

0

)
.

Now for the induction step assume the statement is true for k − 1. Then we have

|F | =m =
(
x

k

)
.

We can assume without loss of generality that F is stable, due to Lemma 13.4. From
Lemma 13.6 we get

|∆F | = |F ′1 |+ |∆F
′

1 |.

We claim that that |F ′1 | ≥
(
x − 1
k − 1

)
(this claim will be shown later) then we can find

y ≥ x − 1, such that |F ′1 | =
(
y

k − 1

)
. We can apply the induction hypothesis to the above

equation to get

|∆F ′1 | ≥
(
y

k − 2

)
≥

(
x − 1
k − 2

)
where the second inequality follows from the monotonicity of the polynomial

( y
k−2

)
for

y ≥ k − 2. All this implies that

|∆F | ≥
(
x − 1
k − 1

)
+
(
x − 1
k − 2

)
=

(
x

k − 1

)
which is what we want to show.

It remains verify the above claim: |F ′1 | ≥
(x−1
k−1

)
. We know that

|F | = |F0|+ |F1| = |F0|+ |F ′1 |
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Assume that |F ′1 | <
(x−1
k−1

)
, then since |F | =

(x
k

)
we get(

x

k

)
= |F0|+ |F ′1 | < |F0|+

(
x − 1
k − 1

)
,

rearrange this to get

|F0| >
(
x

k

)
−
(
x − 1
k − 1

)
=

(
x − 1
k

)
+
(
x − 1
k − 1

)
−
(
x − 1
k − 1

)
=

(
x − 1
k

)
By Lemma 13.5 |F ′1 | ≥ |∆F0|. So

|F ′1 | ≥ |∆F0|
induction
↓
>

(
x − 1
k − 1

)
E

but this is in contradiction to |F ′1 | <
(x−1
k−1

)
. So we have proved the claim which then

completes the proof.

Remark. Did you notice that the induction step in the last displayed formula of the
proof was on x and not on k? This observation asks for an induction basis for this
second induction. We should show that if |F | is m and m < k + 1 (this implies x < k + 1)
we have |∆F | ≥

( x
k−1

)
. While this is true we only have long and ugly proofs. In fact in

the literature this gap is ubiquitous.

Now that we have completed this proof we look at an application of the theorem:

13.1 A second proof of the Erdős-Ko-Rado theorem

Recall the statement of Theorem 12.2 (Erdős-Ko-Rado): Suppose that n ≥ 2k, then for
an intersecting family A ⊆

([n]
k

)
it holds true that

|A| ≤
(
n− 1
k − 1

)
Second proof using Kruskal-Katona. ForAwith the given properties, let Ā be the family
of complements of A. Consider the down-set of Ā its elements on the k-th rank (the
one A belongs to) will be disjoint from A. Suppose that A ∈ A is also in the down-set
of Ā. Then the there is a B ∈ A with A ⊂ B. This, however, implies that A and B are
disjoint which contradicts the intersection property of A.

Since Ā is a family of n− k-sets the (n− 2k)-fold application of the shadow operator
brings the sets in the family down to the intersection of the down-set of Ā and rank k.
From the above considerations we get ∆n−2k(Ā)∩A =∅.

Now suppose that |A| >
(n−1
k−1

)
, then since |A| = |Ā| and by the symmetry of the

binomial coefficients we get

|Ā| >
(
n− 1
k − 1

)
=

(
n− 1
n− k

)
.

88
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n− k

k

Ā

A

B

A

B̄

Figure 13.1: The downset of Ā is disjoint from A in the boolean lattice

And from applying the Lovász version of Kruskal-Katona (n− 2k) times to Ā we get
that there are at least

( n−1
(n−k)−(n−2k)

)
=

(n−1
k

)
sets in ∆n−2k(Ā), i.e., in the intersection of

the down-set of Ā with the k-th rank of the Boolean lattice. This implies

|A|+ |∆n−2k(Ā)| >
(
n− 1
k − 1

)
+
(

n− 1
(n− k)− (n− 2k)

)
=

(
n− 1
k − 1

)
+
(
n− 1
k

)
=

(
n

k

)
E

The contradiction is because the size of two disjoint sets which both lie on the k-th
rank of the Boolean lattice cannot exceed the total size of the k-th rank, which is

(n
k

)
.

Therefore |A| ≤
(n−1
k−1

)
.

In the next section we will introduce concepts, which will be extensively used in the
next lecture. They can be used to prove Theorem 12.1 (Sperner’s Theorem), but we
will also use them to investigate the Boolean lattice even more thoroughly.

13.2 Symmetric chains and symmetric chain

decompositions

The concept of a symmetric chain only makes sense in a subclass of posets called
graded posets:

Definition 13.7 (Graded poset, rank). A poset is graded (or ranked) if all maximal
chains have the same length. The rank of an element of a graded poset is its position
in any maximal chain (we start with position 0).

It is a good exercise to check that the rank of an element is well-defined as above.
If the maximal chains have length h, then the element ranks form a partition of the
poset into into h antichains R0, . . . ,Rh−1.
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13. The Lovász Version of Kruskal-Katona

Definition 13.8 (Saturated chain, symmetric chain). A chain C ⊂ P is saturated, if no
element x ∈ P \C with min(C) < x <max(C) exists, such that C + x is a chain.

A saturated chain C ⊂ P is symmetric if

rank(min(C)) + rank(max(C)) = h− 1

Note that the minimum and maximum of a chain are well-defined, unique elements
of the chain since any two elements are comparable. Saturated chains are paths in
the diagram of a poset. Maximal chains and singleton elements are examples of
saturated chains. In a graded poset, the diagram can be drawn in a way such that
the y-coordinate of any element of rank r is r. In such a diagram, a symmetric chain
contains the same number of elements from above the middle line given by y = h−1

2 as
below it. Some examples can be seen in Figure 13.2:

Figure 13.2: Some examples of graded posets with their rank antichains and some symmetric
chains: The leftmost example is a symmetric chain decomposition of B3

If we can partition a poset into symmetric chains we get a symmetric chain decompo-
sition which we will discuss further in the next lecture.
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Lecture

14
Symmetric Chain Decompositions and
Orthogonal Chain Decompositions

At the end of the last lecture we defined symmetric chains. We will use them now
to get towards symmetric chain decompositions and later in this lecture talk about
orthogonal chain decopositions.

14.1 Symmetric chain decompositions

Definition 14.1 (symmetric chain decomposition). For a poset (P ,≤) a symmetric chain
decomposition (SCD) is a partition of P into symmetric chains.

We let rk(x) denote the rank of element x, i.e., its position in any maximal chain
where we start with position 0 and let rk(P ) be the maximum rank in P . We also
define the width w(P ) of P as the size of a maximum antichain, i.e., w(P ) = max(|Â| :
Â antichain in P ).

Proposition 14.2. Let C be an SCD of P . It holds that

• |C| = w(P )

• A =
{
x : rk(x) =

⌊
1
2rk(P )

⌋}
is a maximum antichain.

Proof. Since every chain in C is symmetric and saturated, it contains an element of A
and therefore |C| ≤ |A| ≤ w(P ). Also each chain in C contains at most one element from
an antichain Â which implies w(P ) ≤ |C|. These two inequalities together yield |C| ≤
|A| ≤ w(P ) ≤ |C| which means |C| = |A| = w(P ) whence A is a maximum antichain.

We further observe that for a poset (P ,≤) with r = rk(P ) and ρi being the size of
rank i, the existence of an SCD implies ρi = ρr−i and that the sequence ρ0,ρ1, . . . ,ρr is
unimodular, i.e., it increases up to its maximum, then decreases:

ρ0 ≤ ρ1 ≤ · · · ≤ ρb r2 c = ρd r2 e ≥ · · · ≥ ρr−1 ≥ ρr

For the following theorem we need to define the product P ×Q of posets P = (X,≤P )
and Q = (Y ,≤Q), it has ground set X ×Y and the componentwise order relation ≤PQ,
i.e., (x,y) ≤PQ (x′, y′) ⇐⇒ x ≤P x′ and y ≤Q y′.
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14. Symmetric Chain Decompositions and Orthogonal Chain Decompositions

d = 1: d = 2:

Figure 14.1: Some SCDs for small d

Theorem 14.3. Let K1, . . . ,Kd be chains and

P = K1 ×K2 × · · · ×Kd
Then P has an SCD.

Proof. Induction on d: For d = 1,2 there is an easy SCD as seen in Figure 14.1
d − 1 → d: Let C = {C1, . . . ,Cw} be an SCD of K1 × · · · × Kd−1. We observe that for

Qi = Ci ×Kd we have a partition Q1, . . . ,Qw of P . The union of the SCDs of Ci ×Kd as
in the d = 2 case (Figure 14.1) is a chain decomposition of P . But we also know that
the product with Kd raises the middle line by |Kd |−1

2 . From this it can be seen that all
the constructed chains are symmetric in K1 ×K2 × · · · ×Kd .

Corollary 14.4. • Boolean lattices have an SCD since they are products of 2-chains.

• Divisor lattices and therefore multiset lattices have an SCD since the lattice of m =
pa1

1 · p
a2
2 · · · · · p

ak
k is (isomorphic to)

Ca1
×Ca2

× · · · ×Cak
where Ck is the chain with k + 1 elements.

• The width of Bn is
( n
b n2 c

)
. (Sperner’s Theorem: Theorem 12.1)

14.1.1 A direct construction of an SCD of Boolean lattices

We have seen an inductive construction of symmetric chain decompositions for prod-
ucts of chains. We now aim for a direct construction of an SCD for the Boolean lattice.
We will use a clever encoding of the elements of the symmetric chains. To describe
this we use an example with A = {1,3,4,7,8} ⊆ [10] (so n = 10).

1. Let cA be the characteristic vector of A, in our example cA = (1011001100).

2. We replace ones with closing parentheses ’)’ and zeros with opening paren-
theses ’(’ and define the set MA to contain all the elements corresponding to
matching parenthesis. In our example, the parenthesis expression would be
)1(2)3)4(5(6)7)8(9(10 (indices indicate the positions) the matched pairs are (2)3,
(5)8, and (6)7, therefore MA = {2,3,5,6,7,8}
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14.1 Symmetric chain decompositions

3. Define FA = [n] −MA and IA = MA ∩ A. In the example FA = {1,4,9,10} and
IA = {3,7,8}.

4. For FA = {x1 < x2 < · · · < xk} and for i = 0, . . . , k let Ai = IA ∪ {x1,x2, . . . ,xi}. Then
A0, . . . ,Ak is a saturated chain. From

|A0| =
|MA|

2
and |Ak | =

|MA|
2

+ |FA| =
|MA|

2
+n− |MA| = n−

|MA|
2

we see that the chain is also symmetric. In our example we get

A0 = {3,7,8}
A1 = {1,3,7,8}
A2 = {1,3,4,7,8}
A3 = {1,3,4,7,8,9}
A4 = {1,3,4,7,8,9,10}

We claim, that starting the construction with any A ∈ {A0, . . . ,Ak} yields the same chain.
This claim is true, because all these sets yield the same set of matched parenthesis PA
(in the example PA = {(2,3), (5,8), (6,7)}) and no other element yields this set. That also
means that the chain containing A is the set of all B with PB = PA. The union of all
chains that can be obtained by this procedure is an SCD of Bn.

14.1.2 Application: An estimate of Dedekind numbers

Definition 14.5. Dn = #(antichains in Bn) are called Dedekind numbers. These an-
tichains are exactly the elements of the free distributive lattice, which together with the
order relation on antichains A and B given by

A ≤F B⇔∀a ∈ A ∃b ∈ B : a ⊆ b

is a lattice. Hence Dedekind numbers can also be defined as

Dn = #(elements of the free distributive lattice Fn)

In Figure 14.2 one can see the Hasse diagram for the Boolean lattices and the
free distributive lattices for n = 0, . . . ,3. Information about Dedekind numbers is
collected in the On-Line Encyclopedia of Integer Sequences (entry A000372), see
http://oeis.org/A000372. From there we have taken the known values:
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14. Symmetric Chain Decompositions and Orthogonal Chain Decompositions

n Bn Fn

0 ∅
{∅}

∅

1

{1}

∅

{1}

{∅}

∅

2

∅

{1} {2}

{1,2}

∅

{∅}

{1} {2}

{1},{2}

{1,2}

3

∅

{1} {2} {3}

{1,2} {2,3}{1,3}

{1,2}

∅

{∅}

{{1}} {{2}} {{3}}

{{1},{2}} {{2},{3}}{{1},{3}}

{{1,2}} {{1,3}} {{2,3}}{{1},{2},{3}}

{{1,2},{3}} {{1,3},{2}} {{2,3},{1}}

{{1,2},{1,3}} {{1,2},{2,3}} {{1,3},{2,3}}

{{1,2},{1,3},{2,3}}

{{1,2,3}}

Figure 14.2: Diagrams of the Boolean lattices and the free distributive lattices for n = 0, . . . ,3
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14.1 Symmetric chain decompositions

n Dn
0 2
1 3
2 6
3 20
4 168
5 7581
6 7828354
7 2414682040998
8 56130437228687557907788

Since there is no easy way known to compute theses numbers, we are interested in
estimating them. Kleitman and Markowsky showed in 1975 that(

n

bn2c

)
≤ log2(Dn) ≤

(
n

bn2c

)(
1 +O

(
logn
n

))
In this lecture we prove a weaker theorem:

Theorem 14.6.
2

( n
b n2 c

) ≤Dn ≤ 3
( n
b n2 c

)

Proof. The left inequality follows from the fact, that there are
( n
b n2 c

)
elements on rank

bn2c on the Boolean lattice and each subset of these is an antichain.
For the right inequality we want to find an estimate on the number of monotone

functions (that’s all f : 2[n]→ {0,1} with f (B) = 1 =⇒ f (A) = 1 whenever A ⊆ B) which
are the characteristic vectors of downsets. Downsets are in bijection with antichains
via DA = {b : ∃a ∈ A with b ≤ a} and AD = Max(D).

The idea is to use the SCD obtained by the parenthesis method (Section 14.1.1) to
encode the monotone functions. Given f we look at the chains of the SCD in a fixed
order of the chains by increasing size. For chains of size 1 or 2, there are at most
3 possibilities for the evaluation of a monotone f on the elements of the chain, the
evaluation (f (a), f (b)) = (0,1) on a chain (a < b) conflicts with the monotonicity.

Suppose we have encoded the values of f for all elements in chains of length ≤ k.
Now we look at a chain A0, . . . ,Ak of length k + 1. The sets in this chain can be written

Ak = X0)X1)X2) . . . )Xk
...

A1 = X0)X1(X2(. . . (Xk
A0 = X0(X1(X2(. . . (Xk

where X0, . . . ,Xk represent –possibly empty– blocks of matched parenthesis. For each i
we can write the set Ai as Y )Xi(Z with appropriate Y and Z. Now define Bi = Y (Xi)Z.
Note that Bi has an additional pair of matched parenthesis, hence, it belongs to a chain
of length at most k and f (Bi) is known. Now observe that Ai−1 ⊂ Bi ⊂ Ai+1. Therefore
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14. Symmetric Chain Decompositions and Orthogonal Chain Decompositions

• if f (Bi) = 0, then f (Aj) = 0 for all j ≥ i + 1

• if f (Bi) = 1, then f (Aj) = 1 for all j ≤ i − 1

Consider the sequence f (B1)f (B2) . . . f (Bk−1) and set i = max{j : f (Bj) = 1}V. From
(f (Bi), f (Bi+1) = (1,0) we can conclude that f (A0) = · · · = f (Ai−1) = 1 and f (Ai+2) = · · · =
f (Ak) = 0. Hence only f (Ai) and f (Ai+1) are not determined and we have at most 3
possibilities to choose values for f (Ai) and f (Ai+1).

The number of chains in the SCD is given by the width of the Boolean lattice, that
is we have

( n
b n2 c

)
chains. We have seen that we can encode f by recording one of three

possible values for each chain, hence there can be at most 3 to the power of
( n
b n2 c

)
monotone functions.

14.2 Orthogonal chain decompositions

Definition 14.7. Two chain decompositions C1,C2 of the same poset are called orthogo-
nal if |C1 ∩C2| ≤ 1 for all C1 ∈ C1, C2 ∈ C2.

It is an open question, how many pairwise orthogonal chain decompositions (OCDs)
can be found in Boolean lattices:

• A pair of OCDs can be constructed as follows: Let C1 be the SCD obtained from
the parenthesis construction. Recall that this construction was based using the
replacement 0↔ ( and 1↔). Construct C2 with the same method but based
on 0 ↔) and 1 ↔ (. It can be shown that C1 ∈ C1 and C2 ∈ C2 have at most
one element in common unless both contain ∅ and [n]. This can be avoided by
moving ∅ to another chain in C2 that is disjoint of C1.

• It is conjectured that dn+1
2 e OCDs exist in the Boolean lattice Bn.

• In 2018 it was shown with computer assistance that for n ≥ 60 always 4 OCDs
exist.

Pairs of orthogonal chain decompositions have a nice application to estimating the
probability of being comparable. Given a probability distribution φ on P , what can
we say about Pr(x ≤ y) when x and y are chosen independently with respect to φ? If φ
is concentrated on a single element Pr(x ≤ y) = 1 and if φ is the uniform distribution
on a maximum antichain, then Pr(x ≤ y) = 1/w(P ). We are thus interested in lower
bounds.

Theorem 14.8. Let P be a poset with a pair of orthogonal chain decompositions C1,C2 and
let k = |C1|, l = |C2|. Given a probability distribution on P , for x,y chosen independently
with respect to that distribution, it holds, that

Pr(x ≤ y) ≥ 1
2

(1
k

+
1
l

)
VFor the proof we assume 1 ≤ i ≤ k −1 and leave the case that there is no j with f (Bj ) = 1 to the reader.
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14.2 Orthogonal chain decompositions

Remark. • For k = l = w(P ) this implies Pr(x ≤ y) ≥ 1
w(P ) .

• If C is an n-chain then C has no pair of orthogonal chain partitions each consist-
ing of one chain, but w(C) = 1. Still, for the uniform distribution

Pr(x ≤ y) =
(n

2
)

+n

n2 =
n+ 1
2n
∼ 1

2
<

1
w(C)

= 1

• The pair C1, C2 of orthogonal chain decompositions of the Boolean lattice has
the property that their numbers of chains equal

( n
b n2 c

)
. Hence because we can

concentrate the probability on a maximum antichain we get 1/
( n
b n2 c

)
≤ 1/w and

hence w ≤
( n
b n2 c

)
. This is yet another proof of Sperner’s Theorem.

For the proof of the theorem we need a few lemmata:

Lemma 14.9. Let X be a set, |X | = n and p : X → [0,1] a probability distribution. Let
further x,y be chosen independently from (X,p). Then

Pr(x = y) ≥ 1
n

Proof. First consider the following:

0 ≤
∑
α∈X

(pα −
1
2

)2 =
∑
α∈X

p2
α −

2pα
n

+
1
n2 =

∑
α∈X

(p2
α)

− 2
n

+
1
n

This shows that the quantity of interest Pr(x = y) =
∑
α∈X p

2
α has to be at least 1/n.

Lemma 14.10. Let P = (X,≤) be a poset, p : X → [0,1] a probability distribution, and
C = (C1, . . . ,Ck) be a chain decomposition of P . If x,y are chosen independently from (X,p),
then

Pr(x,y belong to the same chain) ≥ 1
k

Proof. Interpret C as k element set with the probability distribution q(C) =
∑
x∈C p(x)

and apply Lemma 14.9 to (C,q).

We will finish the proof of Theorem 14.8 in the next lecture.
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Lecture

15
Duality Theorems

We will start this lecture with the proof of Theorem 14.8. Then we start a new section
on duality theorems. The first results will be Dilworth’s theorem and its dual which
deal with chains and antichains in posets. We then continue with duality theorems on
graphs.

15.1 Probability of an ordered pairs

For the sake of readability we restate Theorem 14.8 below as Theorem 15.1. the proof
of the theorem will critically depend on Lemma 14.9 and Lemma 14.10 from the
previous lecture.

Theorem 15.1. Let P be a poset with a pair of orthogonal chain partitions C1,C2 and let
k = |C1|, l = |C2|. Given a probability distribution on P , for x,y chosen independently with
respect to that distribution, it holds, that

Pr(x ≤ y) ≥ 1
2

(1
k

+
1
l

)
.

Proof. Let P = (X,≤) and let p : X→ [0,1] be a probability distribution. Let x and y be
drawn independently fom this distribution. then

Pr(x ≤ y) =
∑
α∈X

p2
α +

∑
α<β, αβ∈X

pαpβ , (15.17)

The first sum gives the probability for x = y and the second sum the probability for
x < y. Now consider the two orthogonal chain decompositions C1, C2 and ask for the
probability that x < y with x and y belonging to the same chain C ∈ C1 ∪C2. Since the
chain decompositions are orthogonal this event is the disjoint union of two events, one
for C1 the other for C2. Therefore we have:∑

α<β: αβ∈P
pαpβ ≥

∑
C∈C1,α<β:
αβ∈C

pαpβ +
∑

C∈C2,α<β:
αβ∈C

pαpβ .
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15.1 Probability of an ordered pairs

Combining this inequality with Equation (15.17) and subsequently using Lemma 14.10
we conclude

Pr(x ≤ y) ≥
∑
α∈X

p2
α +

∑
C∈C1,α<β:
αβ∈C

pαpβ +
∑

C∈C2,α<β:
αβ∈C

pαpβ ,

=
1
2


∑
α∈X

p2
α + 2

∑
C∈C1,α<β:
αβ∈C

pαpβ

+
1
2


∑
α∈X

p2
α + 2

∑
C∈C2,α<β:
αβ∈C

pαpβ


=

1
2

Pr (C1(x) = C1(y)) +
1
2

Pr (C2(x) = C2(y))

≥ 1
2

(
1
k

+
1
`

)

In the third line Ci(x) = Ci(y) denotes the event that x and y are elements of the same
chain C ∈ Ci , for i ∈ {1,2}. The equation between line two and three is based on the
following reasoning. With the factor 2 in front the

∑
C∈Ci ,α<β:αβ∈C pαpβ can be seen

as the probability of the event that x , y belong to the same chain of Ci . The last
inequality follows from Lemma 14.10.

Remark. The lower bound in Theorem 14.8 is tight. To see this we provide examples of
equality instances.

Example 23. Let P be the product of two chains P = C2 ×C3. This is a poset with six
elements. We assign probabilities as shown in the following figure.

0

1
3

1
6

1
6

1
3

0

C
3

C 2

Figure 15.1: The poset P = C2 ×C3 with respective probabilities.

We immediately see that Pr(x ≤ y) = 2(1
3 )2 + 2(1

6 )2 + 1
3

1
6 + 1

6
1
3 + 1

6
1
6 = 1

2(1
2 + 1

3 ).
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Example 24. Now let P = C5×C6, this is a poset with thirty vertices. Assign probabilities
as given by in following figure.

5
30

1
30

4
30

2
30

3
30

3
30

2
30

4
30

1
30

5
30

C
6

C 5

Figure 15.2: The C5 ×C6 poset with respective probabilities.

It is a little tedious but easy to verify that this again marks an equality instance.

The examples provide an idea on how to continue this construction for arbitrary
product posets Ck ×C`: if k = ` assign probability 1/k to the elements of the unique
maximum antichain. Otherwise assume that ` < k, start ba assigning probability 1/`
to the left extreme element and then assign probabilities one-by-one along a zigzag
path such that in each step one of the k + ` chains becomes saturated in the sense that
it has its intended probability. The intended probability of a chain C parallel to C` is
Pr(x,y ∈ C and x ≤ y) = 1/k and of a chain parallel to Ck is Pr(x,y ∈ C and x ≤ y) = 1/`.

15.2 Duality theorems

We start this chapter by proving a theorem due to Dilworth. We then continue with
investigating several other duality theorems and making connections between them.

15.2.1 Dilworth’s theorem

Before stating and proving Dilworth’s theorem, we start by proving its dual which is
more obvious. To get to the statement let us first consider the comparability graph of a
partially ordered set.
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15.2 Duality theorems

Definition 15.2. Let P = (X,≤) be a poset. The comparability graph Comp(P ) = (X,E) is
a graph on the same ground set with edges xy ∈ E ⇐⇒ (x < y or x > y), that is xy ∈ E
if and only if x and y are comparable in P .

Example 25. We give an example of a Poset P together with its comparability graph
Comp(P ).

1

2

3

4

5

7→

1 2

3

4

5

Figure 15.3: A poset on five vertices on the lefthand side, together with its comparability graph
on the righthand side.

Definition 15.3 (Coloring of a graph). A coloring of a graph G = (V ,E) is a map
γ : V → N (where elements of N are considered to be colors) such that the two vertices
of any edge xy ∈ E are colored differently γ(x) , γ(y).

We denote by χ(G) the chromatic number of G, that is the minimal number n ∈ N
such that there is a coloring χ : {1, . . . ,n} → V of G.

Observation. It turns out that the color classes of the comparability graph of P cor-
respond to antichains in P . Hence, a coloring of the comparability graph induces a
decomposition of X into antichains.

1 2

3

4

5

Figure 15.4: A 3-coloring of a comparability graph, related to the previous example.

For every graph G we have χ(G) ≥ ω(G), where ω(G) is the clique number of G, i.e.
the largest integer n such that G contains a Kn (complete graph on n vertices) as a
subgraph. This is true because in a Kn any two vertices need to be colored differently.
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15. Duality Theorems

We are ready for the dual of Dilworth’s theorem, which essentially states that for
comparability graphs we have ω(G) = χ(G).

Proposition 15.4. Let P = (X,≤) be a poset. Then

max(|C| : C is a chain in P ) = min(|A| : A is an antichain partition of P ).

Proof. First note that for every antichain partition A of P and for every chain C in P it
holds true that

|A| ≥ |C|. (15.18)

This is true since every element in the chain C has to be in a different antichain of the
antichain partition. It remains to construct a pair (A,C) with equality.

We iteratively construct an antichain partition: Let P1 := P . Given Pi , letAi := min(Pi)
be the antichain of minimal elements of Pi , then set Pi+1 := Pi −Ai . Since the poset
is finite and at each step at least one element is removed from the previous Pi , this
iterative procedure terminates. The result is an antichain partition A = {A1, . . .Ak}. We
claim that there is a chain C in P of the same size, i.e. |C| = k.

To extract a chain let xk ∈ Ak be arbitrary. Since xk did not belong to Ak−1 it was
not minimal in Pk−1, hence there is an xk−1 ∈ Ak−1 with xk−1 < xk. This element xk−1
must have a predecessor xk−2 ∈ Ak−2 with xk−2 < xk−1. The iteration stops wih x1 ∈ A1,
it yields:

C := x1 < x2 < . . . < xk , for xi ∈ Ai .
This is a chain of length k, hence we found an equality instance |A| = |C|. This
concludes the proof.

Remark. For the comparability graph G of P we get ω(G) = χ(G) because ω(G) =
max(|C| : C is a chain in P ))

and χ(G) = min(|A| : A is an antichain partition of P )).

We will now state and prove Dilworth’s theorem, which we reverses the roles of
chain and antichain in the previous proposition. Theorem 15.5 and Proposition 15.4
are dual to each other.

Theorem 15.5 (Dilworth’s theorem). Let P = (X,≤) be a poset. Then

max(|A| : A an antichain in P ) = min(|C| : C a chain partition of P ).

Proof. Since a chain and an antichain can share at most one element we directly obtain
the trivial inequality |C| ≥ |A|, hence, we only have to prove the existence of a pair with
equality.

The proof is via induction on the number of elements in X. Assume the statement
for posets of at most n elements and consider P = (X,≤) with |X | = n+ 1.

Let A be an antichain such that |A| is maximal. We define

U [A] := {x ∈ X | ∃a ∈ A such that x ≥ a},
D[A] := {x ∈ X | ∃a ∈ A such that x ≤ a},
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15.2 Duality theorems

these are the upset and the downset of A respectively. Note that A belongs to both parts,
in fact A = min(U [A]) and A = max(D[A]). Since antichains of U [A] and D[A] are also
antichains in P we see that A is an antichain of maximum size in both parts.

If |U [A]| < |X | and |D[A]| < |X |, then we can apply induction to obtain chain partitions
CU and CD of U [A] and D[A] respectively with |CU | = |A| = |CD |. Now for each a ∈ A
let Ca ∈ CU and C′a ∈ CD be the chains containing a. Since a is the minimal element
of Ca and the maximal element of C′a we can glue the chains together at a to obtain a
chain Da covering Ca ∪C′a. The collection C = {Da | a ∈ A} is a chain partition of P and
|C| = |A|.

If there is no antichain in P such that the above construction can be used, then
|U [A]| = |X | or |D[A]| = |X | for every maximum antichain A. The only remaining
candidates for a maximum antichain are Min(P ) and Max(P ), i.e. the antichains given
by the minimal or maximal elements. We assume that A = Max(P ) is a maximum
antichain. Pick x ∈Max(P ) and y ∈Min(P ) such that x ≥ y, i.e. they are comparable
or equal. Then {x,y} is a chain and the maximum size of an antichain in P \ {x,y} is
less than |A|. By induction we get a chain partition of P \ {x,y} by C′ := {C1, . . . ,Ck} with
k < |A|. Adding the chain {x,y} to C′ yields a chain partition C of P with at most |A|
chains. Clearly |C| = |A| and we are done.

Definition 15.6 (Height of a poset). We define the height of a poset P , written h(P ) via
h(P ) := max(|C| : C is a chain in P ).

Definition 15.7 (Width of a poset). We define the width of a poset P , written w(P ) via
w(P ) := max(|A| : A is an antichain in P ).

A direct corollary to Dilworth’s theorem and its dual reads as follows.

Corollary 15.8. Let P = (X,≤) be a Poset. Then we get the following bound on the number
of elements in P :

|X | ≤ h(P )w(P ).

Getting back to comparability graphs, Dilworth’s theorem and its dual can be stated
as follows.

Corollary 15.9. Let P be a Poset, and G := Comp(P ) its comparability graph. Then
ω(G) = χ(G), and α(G) = Θ(G).

Remark. Recall that ω(G) = h(P ) and α(G) = w(P ), where ω(G) denotes the clique
number and α(G) the independence number. Also recall that χ(G)is the chromatic
number and Θ(G) is the minimum number of cliques needed to cover the graph.

Definition 15.10 (ω-perfect graphs). A graph is called ω-perfect if for every induced
subgraph H ⊆ G we have ω(H) = χ(H).

Proposition 15.4 implies that every comparability graph is ω-perfect.

Definition 15.11 (α-perfect graphs). A graph is called α-perfect if for every induced
subgraph H ⊆ G we have α(H) = Θ(H).
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Dilworth’s theorem implies that every comparability graph is α-perfect. We state
but do not prove an important result on perfect graphs. For a detailed proof visit the
lectures on graph theory (discrete mathematics II).

Theorem 15.12 (weak perfect graph theorem). The following are equivalent for G:

• G is ω-perfect,

• G is α-perfect,

• G is product-perfect, that is for every induced subgraph H ⊆ G it holds true that
|VH | ≤ α(H)ω(H).

15.2.2 Further duality theorems

There are several duality theorems with a similar flavor as Dilworth’s theorem and
its dual. An example is the result by Ford and Fulkerson and Ford known as the
Max-Flow Min-Cut theorem. It states that the flow value of a maximum s-t flow in a
capacitated network equals the minimum capacity of an s-t cut. Another example
of a duality theorem is Menger’s theorem. It says that in a graph G = (V ,E) with two
subsets A,A′ ⊆ V , the maximum number of pairwise disjoint A-A′ paths in G equals
a minimum size of a separator separating A from A′. We will focus on yet another
duality result, the bipartite matching theorem, and prove that it equivalent to Dilworth’s
theorem.

Recall that a matching in a graph G is a subset of edges M ⊆ E(G) such that no two
edges e,e′ ∈M share a vertex. A vertex cover of a graph G is a collection of vertices
U ⊆ V (G) such that every edge e ∈ E(G) is incident to at least one vertex in U .

Theorem 15.13 (Bipartite matching theorem (König-Egerváry)). Let G = (V ,E) be a
bipartite graph. The minimum size of a vertex cover in G equals a maximum size of a
matching in G.

We show that Dilworth’s theorem implies the bipartite matching theorem and
conversely.

Dilworth’s theorem implies the bipartite matching theorem:
Let B = (X,Y ;E) be a bipartite graph. Note that if M is a matching and U is a vertex

cover, then |U | ≥ |M | because different edges of M have to be covered by different
vertices of U . Hence, to prove the theorem we only need such a pair with |U | = |M |.

We can interpret B as a poset P = (S,<) with S = X ∪Y and x < y whenever (x,y) ∈ E.
Note that the height of P is 2. Therefore a minimum chain partition C of P consists of
chains of size one and two only. The two element chains of C are a matching M of B.
Counting the elements of P via the chains of C we obtain: |C|+ |M | = |S | = |X |+ |Y |.

Let A be a maximum antichain in P and let U = S \A be its complement. We claim
that U is a vertex cover in B. Otherwise there would be an edge e in the complement
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15.2 Duality theorems

of U , this edge e, however, corresponds to a comparability among elements of A, but
A is an antichain. Clearly |A|+ |U | = |S | = |X |+ |Y |.

From Dilworth’s theorem, we know that |C| = |A|. Together with |C| + |M | = |S | =
|A|+ |U | this implies |M | = |U |. This concludes the proof.

The bipartite matching theorem implies Dilworth’s theorem:
Let P = (S,≤) be a poset, we construct a bipartite graph BP as follows:

BP = (S ′,S ′′;E) here S ′ and S ′′ are two copies of S,
x′y′′ ∈ E ⇐⇒ x < y in P

Clearly x′ and y′′ refer to the elements corresponding to x and y in S ′ and S ′′ respec-
tively. The construction of BP is illustrated in Figure 15.5.

1 32

54

6

1’’ 2’’ 3’’ 4’’ 5’’ 6’’

1’ 2’ 3’ 4’ 5’ 6’

Figure 15.5: The poset P on the left induces the bipartite BP on the right.

Let M be a maximum matching in BP . The edges of M correspond to a set CM of
comparabilities in P . Each element y of P participates in at most two comparabilities
from CM . This is because M is a matching and there are only two copies y′, y′′ of
y in BP , moreover, if y participates in two comparabilities then we have edges x′y′′

and y′z′′ in M and get the comparabilities x < y < z in P . Hence the comparabilities
in CM fit together to form a collection of chains. This collection can be extended by
one-element chains to form a chain partition CM of P . The number of chains in CM
is easily seen to be |S | − |M |: Start with the trivial chain partition into |S | one-element
chains and add the edges of M one by one each added edge glues two chains together
thus reducing the number of chains in the partition by one.

1’’ 2’’ 3’’ 4’’ 5’’ 6’’

1’ 2’ 3’ 4’ 5’ 6’

1 32

54

6

Figure 15.6: On the left a matching of BP marked in red. On the right the corresponding chain
partition of P .
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x′

x′′

Succ(x)′′

Pred(x)′

Figure 15.7: The sets Pred(x)′ and Succ(x)′′ have been marked in green.

Now consider a minimum vertex cover U in BP and define

A := {x |U ∩ {x′,x′′} = ∅}.
Since the elements of U cover all the edges of BP the set A is an antichain of P . We
claim that |A| = |S | − |U |. If this is shown we can use |U | = |M | to obtain the equality
needed for the proof of Dilworth’s theorem:

|A| = |S | − |U | = |S | − |M | = |CM |
To prove the equation |A| = |S | − |U | we show that for all x in S the vertex cover U

contains at most one of x′ and x′′. Consider Pred(x)′ := {z′ | z′x′′ ∈ E} and Succ(x)′′ :=
{z′′ | x′z′′ ∈ E} as illustrated in Figure 15.7.

By transitivity v < w for every v ∈ Pred(x) and w ∈ Succ(x). This implies v′w′′ ∈ E
and the two sets Pred(x)′ and Succ(x)′′ form a complete bipartite graph in BP . To cover
this bipartite graph U must contain one of Pred(x)′ and Succ(x)′′. If Pred(x)′ ⊂U then
all the edges incident to x′′ are covered, whence, x′′ < U by minimality of U . In the
other case x′ <U . This concludes the proof.

We finish this lecture with a pretty result that has accompanied many math students
on their journey throughout a variety of disciplines

Lemma 15.14 (Lemma of Erdős-Szekeres). Let (a1, . . . , an2+1) be a sequence of real num-
bers. The sequence contains an increasing or a decreasing subsequence of length n+ 1.

Proof. Define a poset PA = (X,≤) via

(i,ai) ∈ X, (15.19)
(i,ai) ≤ (j,aj) ⇐⇒ i ≤ j and ai ≤ aj . (15.20)

Then a chain in PA is a weakly increasing subsequence whereas an antichain is a strictly
decreasing subsequence. Now |PA| = n2 + 1 ≤ h(PA)w(PA) implying that either h(PA) or
w(PA) have to exceed n. This concludes the proof.
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16
Tilings

This chapter is devoted to tilings. We have seen the special case of monomino/domino-
tilings of a 1×n board when discussing fibonacci numbers. Tilings are part of what is
called geometric coverings, that is we try to cover some geometric regions using only
designated patches (in this case called tiles).

We will omit a general definition of tiling and tiles and just introduce the concept of
checkerboard tilings: A region or a board is to be thought of as a subset of the infinite
grid. An example for a board would be the 8× 8-board which is a checkerboard when
colored accordingly. Tiles are as well subsets of the grid, however, because tiles can
be translated and typically we have many copies of a tile it may be better to think of
them as connected collections of squares.

Now given a board B and a set of tiles T a tiling of B with T is given by a placement
of tiles on the board such that they cover the whole board and do not overlap.

Example 26 (Tiling a region). Let B be a 4× 3 board and T the set of dominoes. The
following figure shows B a single tile and a tiling of B with dominoes.

(4× 3)-Board Domino-Tile

3

4

Figure 16.1: A (4× 3)-board with a domino-tiling.

Given a board B and a collection T of tiles a combinatorialist may ask the following
questions:

• Does a tiling exist, i.e., can B be tiled with tiles from T ?

• How many tilings of B with tiles from T exist?

107



16. Tilings

H

W

Figure 16.2: A tiling of an H ×W -board with H identical rows.

• What are properties of the tilings? e.g. what is the probability that a given cell
of B is covered by a horizontal/vertical domino?

In this lecture we will focus on existence, i.e, on the first question and answer it for
several combinations of boards and tiles.

16.1 Tiling boards with dominoes

We start by considering tilings of rectangular and almost rectangular boards using
domino tiles.

Proposition 16.1. Let H,W ⊂ N then the (H ×W )-board has a domino tiling if and only if
H ·W ≡ 0 mod 2.

Proof. ⇒: Consider a checkerboard coloring of the (H×W )-board. Each domino placed
on the board will cover a white cell and a black cell. A tiling provides a bijection
between black and white cells. Hence, if B can be tiled its cells can be partitioned into
two parts of equal size, i.e., the number of cells is even.
⇐: Assume thatH ·W ≡ 0 mod 2, hence, one ofH andW is even, sayW is even. We

can cover the (1×W )-board with domino tiles by putting them side by side. Repeating
this tiling for each of the |H | rows on the H ×W board giving a tiling for this board
see Figure 16.2.

Next we look at almost rectangular boards, that is (n×m)-boards where some cells
have been deleted.

Proposition 16.2. Given an (H ×W )-board with H even and W ≥ 2, if we delete one black
and one white cell the remaining board admits a tiling.

Proof. Since H is even we know from the previous proposition that the (H ×W )-board
admits a tiling. Thinking of the board as a graph, we next consider its dual graph
which has a vertex for each cell of the board and an edge between two vertices if
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16.1 Tiling boards with dominoes

(a) A Hamilton cycle in the dual of the board. (b) A tiling with red dominos and a tiling with
blue dominos, both only use edges of the
Hamilton cycle.

Figure 16.3: A Hamilton cycle and its two tilings for a (H ×W )-board.

B

7→ 7→

G

Figure 16.4: An example showing the dual graph G of a region B.

the corresponding cells are adjacent. Then this dual graph contains a Hamilton cycle,
which is a cycle visiting all the cells exactly once, see the left hand side of Figure 16.3.

Now we have two possible tilings along this cycle, where the second can be obtained
from the first by simply shifting all the dominoes by one cell, see the right hand side
of Figure 16.3.

If we delete a black and a white cell on the board, we split the Hamilton cycle into
at most two paths. Each path can be tiled with one of the two tilings: for when we
deleted a white cell we can take the tiling that starts after it on the black cell and
thus this one must end in a white cell which implies that it does end before the other
deleted black cell and thus is a valid tiling of the path. The other case is similar.

We show next, that for every board consisting of unit squares it is efficiently decid-
able whether there is a domino tiling or not.

Theorem 16.3. Let B be any board consisting only of unit squares. Then it can be decided
in polynomial time (in the input) whether there is a domino-tiling of B.

Proof. Given a board B we look at the respective dual graph G, see Figure 16.4 for
an example. Then a tiling of B corresponds to a perfect matching in G, since no two
tiles overlap and each tile connects two cells, i.e. is an edge in G. It is known that the
existence of a perfect matching can be decided in polynomial time. In the given case G
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is bipartite, hence, we are interested in perfect matchings of bipartite graphs. This is
an easy special case of the matching problem.

16.2 Criteria for tilings

In this section we will see some examples of boards and tiles where no tiling exists and
discuss criteria for tileability. We start with an example that leads us to the so-called
Hall condition on domino tilings.

Example 27. We give a board that cannot be tiled with domino tiles. The circled area
gives a subboard forcing a certain tiling pattern which however cannot lead to a tiling
of the board. That is any tiling that covers the cell (3,5) marked in orange, must cover
the black cell (3,4). But then the cells (1,3) and (2,4) must be covered by dominos
which both also use (2,3). This is impossible.

Figure 16.5: The mentioned graph that is not tileable, where the problematic zone has been
circled and the square (3,5) has been marked in orange.

The board given in Example 27 violates the Hall condition which is necessary for the
existence of a domino tiling.

Theorem 16.4 (Hall). Let G = (X,Y ;E) be a bipartite graph with |X | ≤ |Y | then there is a
matching covering all of X if and only if for every S ⊂ X it holds that |N (S)| ≥ |S |, where
N (S) denotes the neighbourhood of S.

Remark. To see that the Hall condition cannot be violated by a domino tiling recall
that a domino tiling is equivalent to a perfect matching in the dual graph.

Let us now look at another sort of tiles, namely V -tiles, as given in figure Figure 16.6.

Proposition 16.5. A (2n × 2n)-board cannot be tiled using V -tiles.

This is a direct consequence of the following observation that will be one of our
criteria to check tileability.
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Figure 16.6: The V -tile in its four orientations.

Observation (Criterion 1). Given a region R (in unit squares) and a single type of tile T ,
then for R to be tileable with T we need that the size of T is a divisor of the size of R.
This is obvious, since once we have a tiling for R we have used some number m ∈ N of
tiles T of size k ∈ N to completely cover the region R without overlapping tiles. Thus
the size of the region must be k ·m.

Proof of Proposition 16.5. The (2n × 2n)-board has size 4n which is not divisible by 3,
the size of the V -shaped tiles.

However, when removing a single cell from the board, it becomes tileable.

Theorem 16.6. A (2n × 2n)-board where a single cell has been deleted, can be tiled using
V -shaped tiles.

Proof. We prove this by induction. For n = 1 the statement is clear as the remaining
board can be covered using a single V -tile.

Assume the theorem to hold for (2n × 2n)-boards. Next we look at a (2n+1 × 2n+1)-
board with a single cell deleted. First split the board into 4 quadrants with width
and height 2n (see Figure 16.7). Then the deleted cell must be from one of the four

2n+1

2n+1

2n

2n

2n2n

Figure 16.7: A (2n+1 × 2n+1)-board that has been split into four quadrants of size (2n × 2n)
missing one cell in the lower right quadrant. The three cells around C forming a V -shape
highlighted in orange have been removed for the induction step.

quadrants, without loss of generality assume that it is the bottom right quadrant. The
center where the four quadrants touch is denoted by C. Now delete the tile that is
adjacent to C from each of the other three quadrants, so that on the whole board we
get a V -shaped hole around C, see Figure 16.7. Now the four quadrants of the board
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16. Tilings

are (2n × 2n)-boards each missing exactly one cell, and thus they can be tiled using the
induction hypothesis. Finally, since the three deleted cells around C have a V -shape,
we van fill this with a single V -tile to obtain a tiling of the (2n+1 × 2n+1)-board with
one cell deleted.

With criterion 1 we directly get the following corollary.

Corollary 16.7. Let n ∈ N be arbitrary, then (4n − 1) is divisble by 3.

Our next criterion is based on colorings.
Observation (Criterion 2). Given a region R that is a subset of the infinite grid and a
coloring of the infinite grid (for example an extension of the chessboard coloring), we
can look at the induced coloring of R. Given a single tile T , it is also a subset of the
infinite grid with an induced coloring. Now if R can be tiled using tiles of T , then the
number of cells of R of every single color must match the number of cells of that color
used by the tiles of T . For example, if some linear equation or inequality holds for the
number of cells of different colors for every tile in T , then this relation holds for R as
well.

This criterion is most easily understood using examples.
Example 28 (Using criterion 2 with dominoes). Given a (4×4)-board where two opposite
corners – which have to be of the same color, say white – are deleted, we have 8 black
and 6 white cells left.

Domino

6

8

Figure 16.8: A (4× 4)-board without the two opposite white corners

Any domino tile covers exactly one black and one white cell, thus if we could tile
the board using dominoes, it must have the same number of black and white cells,
which is not the case. This means we cannot tile this board using dominoes.
Example 29 (Using Criterion 2 with t-shaped tiles). We are given a (10×10)-board and
want to tile it using only T -shaped tiles, see Figure 16.9.

By Criterion 1 we need 25 of these. Each t-shaped tile covers either 3 white and 1
black cell or 3 black and 1 white cell. Suppose we use a tiles of the first type and b of
the second type for a tiling, then the following two linear equations for a and b must
be valid:

a+ b = 25
3a+ b = 50,
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16.2 Criteria for tilings

Figure 16.9: The orientations of the T -tile

where 3a+ b = 50 comes from counting the number of covered white tiles. These two
equations lead to 2a = 25 which is an obvious contradiction to a being an integer. We
conclude that the (10× 10)-board admits no tiling with T -tiles.

We ask next: When can we tile a square board using T -tiles?

Proposition 16.8. An (n×n)-board is tileable with T -shaped tiles if and only if 4 divides n.

Proof. Let a and b as before, i.e., we assume a tiling exists which uses a tiles which
cover 3 white and 1 black cell and b tiles which cover 3 black and 1 white cell.

If n is odd, then n2 ∈ 2N + 1 and since T -tiles have size 4 there is no tiling by
Criterion 1.

If n = 2m for odd m the board has size 4m2 and we get a+ b =m2. By looking at the
white cells: 3a+b = 2m2. These two equations lead to 2a =m2 which is a contradiction
since m2 is an odd integer. (Note that a special case of this argument was used in the
previous example).

Figure 16.10: Tiling a (4× 4)-board with T -tiles.

If n = 4m then we are given a (4m× 4m)-board, that is m2 copies of a (4× 4)-board.
The (4× 4)-board admits a tiling with T -tiles, see Figure 16.10). We can use m2 copies
of his tiling to tile the (n×n)-board with T -tiles.

Next we look at tilings with 4-sticks, that is the tiles have shape 1×4 or 4× 1. We
will refer to 4-sticks using the letter S.

Example 30 (Combining the criteria for S-tiles). We show that the (10 × 10)-board
admits no tiling with S tiles. To see this take the first row and color every 4-th cell
red, that is the cells (1,4), (1,8). The red cells in the second row are (2,3), (2,7). The
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16. Tilings

red cells in the third row are (3,2), (3,6), (3,10). Continuing that way the red cells
form diagonals on the board such that horizontally and vertically there is exactly three
non-red cells between two red cells, see Figure 16.11.

S

24

Figure 16.11: A (10× 10)-board with red diagonals and an S-tile.

When tiling the board with S-tiles, every tile covers exactly one red cell: it cannot
cover two since horizontally and vertically they are 4 cells apart from each other, and
it must cover at least one since there are at most three consecutive non-red cells on
the board. Counting the red cells on the board, we see that we have 24 red cells thus
we can use at most 24 S-tiles. By criterion 1 however, given a board of size 100, we
need 25 tiles thus proving that we cannot tile the board using S-tiles.

Remark. A (n × n)-board admits a tiling with S-tiles if and only if 4 divides n. The
proof is similar to the proof of Proposition 16.8 and generalizes the previous example
for the case of n = 2 (mod 4).

The rest of this lecture (the following subsection) is devoted to establishing Criterion
3:

Observation (Criterion 3). Let R be a region and T be a tile. Denote by A the free
abelian group over the infinite board generated by its cells, and denote by T the
characteristic elements of all placements of tiles T , and by 〈T 〉 ⊆ A the subgroup
generated by T . Then if R has a tiling with T tiles, we have that the characteristic
element for R is contained in 〈T 〉.

Don’t panic just yet, the statement will (hopefully) make sense after a few pages.

16.3 A homology criterion for the existence of tilings

First, we define the object of study, an infinite group which contains all possible boards
and tiles.

Definition 16.9 (Free abelian group over the infinite board). A free abelian group given
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by some set of generators S is the group of formal sums∑
s∈I
ass

∣∣∣∣∣ as ∈ Z, I ⊂ S finite


with the componentwise sum. We denote by A the free abelian group with generators
{ei,j | i, j ∈ Z}.

We can imagine Z2 ≡ {ei,j | i, j ∈ Z} as the set of cells of the infinite board B∞ where
we mark some cell as the 0-cell which corresponds to e0,0. These single cells of B∞ are
the generators of A, that is any element a ∈ A can be written as

a =
n∑
k=1

ak · eik ,jk , n ∈ N, ai ∈ Z, {eik ,jk : k = 1, . . .n} a subset of the cells.

Now A is indeed a group, where addition works componentwise, that is given two
elements, say a = 2e1,1 + (−1)e7,8 + 7e2,2 and b = 3e1,1 + (−2)e1,2 + e7,8 + (−3)e2,2 we get

a+ b = 5e1,1 + (−2)e1,2 + 4e2,2.

The neutral element is zero. Inverse elements of generators are their negatives, i.e.,
e−1
i,j = (−1)ei,j . The group is abelian because the ring of coefficients (Z) is abelian.

Elements ofA can be visualized as shown in Figure 16.12, as an infinite board where
the multiplicity ak of eik ,jk is written in the respective cell.

Figure 16.12: Two elements of A as well as their sum are represented on the grid, where e0,0 is
the cell whose lower left corner is marked with a red dot. The sum is 2e−1,1 + 4e−1,0 + 5e0,0 −
4e1,0 + 5e−1,−1 + 2e0,−1 + 3e1,−1 + 2e−2,−1 + e−1,−2 − e0,−2

Having understood the group A, the free abelian group over B∞, we can define
characteristic elements.

Definition 16.10 (Characteristic element). Let R be a region of B∞, that is a selection
of cells of B∞ and let RC := {ei,j | R covers ei,j} be the cells contained in R. Then the
characteristic element for R is given by χR :=

∑
e∈RC 1 · e.
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16. Tilings

Remark. The characteristic element χR can be visualized having a 1 in every cell
covered by R and a 0 in every other cell. If it does not cause confusion we will
(somewhat ambiguously) write R for the characteristic element of R.

Tile placements of a tile T can have characteristic elements as well: After placing
a tile, that tile covers a region R on B∞. So for a tile we get infinitely many possible
placements, which we collect in a set of characteristic elements called T .

Example 31. For the domino tile D, the set D of possible placements of D consists of
all possible elements of the form ei,j + ei+1,j and ei,j + ei,j+1 for i, j ∈ Z.

Given the set of characteristic elements T we define the last missing piece for
Criterion 3:

Definition 16.11. Let T be a tile and T the corresponding set of characteristic elements
of all tile placements. Then we write 〈T 〉 ⊂ A for the subgroup generated by T .

Remark. Elements of 〈T 〉 are of the form
∑n
i=1 ai · Ti where Ti ∈ T and ai ∈ Z.

We continue by giving some example regions in 〈D〉 in the case of domino tiles.

Example 32. Let 〈D〉 be the subgroup generated by domino placements on B∞. Fig-
ure 16.13 shows two elements of 〈D〉 and indicates how they are obtained from
generators, i.e, from weighted domino placements.

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 -1 0 0

0 0 1 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

=

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

∈ T

−

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

∈ T

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 1 0

0 1 1 1 1 0

0 1 0 0 1 0

0 0 0 0 0 0

=

0 0 0 0 0 0

0 0 0 0 0 0

0 1 1 1 1 0

0 1 1 1 1 0

0 1 0 0 1 0

0 0 0 0 0 0

∈ T

−

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

∈ T

Figure 16.13: Examples of elements in 〈D〉 we get by subtracting one characteristic element,
i.e. domino placement (highlighted in green) from another.
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16.3 A homology criterion for the existence of tilings

Remark. Given some A ∈ A we can place tiles T on the board in order to reduce its
support, that is, the set of cells with a non-zero value: Let ei,j ∈ A be the cell such that
max(|i|, |j |) is maximal, then after several tile placements this maximum is reduced,
thus the cells in the resulting formal sum are closer to the origin O. Formally this
means, we can add elements of T – characteristic elements of placements – to the
formal sum A in order to decrease the support, as you can see in Figure 16.14.

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 3 0 0

0 0 2 0 0 0

0 1 0 0 4 0

0 0 0 0 0 0

≡<σ>

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 2 -3 0 0

0 0 -1 -4 0 0

0 0 0 0 0 0

≡<σ>

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 5 0 0 0

0 0 3 0 0 0

0 0 0 0 0 0

Figure 16.14: A 〈T 〉-equivalence chain of elements in A with shrinking support, where new
zeroes are marked in green.

With the domino tile, you can reduce the support to just one cell:

Proposition 16.12. Let A ∈ A and let D be the subgroup generated by the domino tile
placements. Then there exists r ∈ Z such that

A ≡ r · e0,0 mod 〈D〉,

From the proposition we e get a criterion for A ∈ 〈D〉 :

r = 0 =⇒ A ≡ 0 mod 〈D〉 ⇐⇒ A ∈ 〈D〉

0 0 k 0 0 0

h i 0 j 0 0

0 0 0 0 g 0

0 e 0 f 0 0

0 a b c d 0

0 0 0 0 0 z

≡<σ>

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 t 0 0

0 0 0 s 0 0

0 0 0 0 0 0

Figure 16.15: An element of A brought to almost normal form via 〈D〉-equivalences. With just
one additional step we reduce it to (t − s)e0,0.

We claim that the first implication is indeed an equivalence, i.e., if A ≡ r ′ · e0,0
mod 〈D〉, then A ∈ 〈D〉 ⇐⇒ r ′ = 0. We have already see ”⇐”. Given A we define
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16. Tilings

s(A) =
∑

(i,j) white aij −
∑

(i,j) black aij . Since every domino placement covers a white and
a black cell we get that A ≡ B mod 〈D〉 implies s(A) = s(B). In particular (assuming
that e0,0 is a white cell) we find that r ′ = s(A).

Remark. With regard to tilings we get a necessary condition. If R admits a tiling with
tiles from T then R ≡ 0 mod 〈T 〉.

This condition is not incorporating the disjointness of tiles in a tiling and can thus
not be expected to be sufficient. In fact the element of A shown on the lower left of
Figure 16.13 is the characteristic element H of an H shaped region. As shown in the
figure H belongs to 〈D〉 but clearly, the region admits no domino tiling.

In the case of dominos the new necessary condition is not stronger than Criterion 2
(coloring). In fact s(R) = 0 if and only if R has as many white as black cells.

Proposition 16.13. Let A the free abelian group over the infinite board and let 〈D〉 be the
subgroup generated by domino placements, then

A
/
〈D〉 � Z.

The set A
/
〈T 〉 is of special interest and thus gets its own name, whose definition

marks the end of this lecture.

Definition 16.14 (Homology group of T ). Given a set T of tiles and let 〈T 〉 be the
subgroup of A generetad by placements of tiles. The quotient group

H(T ) :=A
/
〈T 〉

is called the homology group of T .

Remark. Criterion 3 reduces to checking whether a region R is the 0-element in the
homology group H(T ).

In the next lecture we will see cases where the homology criterion provides non-
tileability results which could not be obtained with counting or coloring arguments.
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Lecture

17
Homology and the Aztec Diamond

In the last lecture we saw that the homology group of dominoes on the grid is isomor-
phic to Z. Technically: if we have an infinite grid with integers in a finite number of
cells, we can reduce it by some rules, depending on the tile, in this case the dominoes,
to a smaller grid (the other fields of the grid are 0), in this case only one cell with a
number ∈ Z. To standardize the placement of the small grid we have added an origin
in the second image.

1 2

0 -5

(a) Infinite grid with numbers ∈Z

0 0

m 0

(b) One cell with number ∈Z

In the case of the dominoes, we know from the proof of the last lecture that for any
region (even with holes), if we colour the grid like a chessboard, m is the number of
white cells minus the number of black cells.

17.1 Tilings with L shapes

Let us have a look at a second example of a homology group related to tilings using a
certain single tile:

(a) L shape

− =
1 -1

(b) First observation

Figure 17.1: A first observation about the L shape
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17. Homology and the Aztec Diamond

Example 33. Consider the case of tilings where the tiles are all rotations and reflections
of an L shape, a tetromino with three cells in a straight line and one in a right angle
to the other three (see Figure 17.1a). What is the homology group of these tiles?
A first observation (illustrated in Figure 17.1b) can be used to prove the following
proposition:

Proposition 17.1. Every A ∈ A is congruent to some element of type: a b
c d

Proof. If we have an s somewhere in the grid, then we can move it two steps into any
direction by the observation in Figure 17.1b. Thus we can move it to this small grid as
illustrated in Figure 17.2.

s0s1s2s3s4

s5

s6

s7

Figure 17.2: Path to move element s into the 2× 2-Box, si is the position of s in the i-th step.

With the observation we also know, that

1
1
1 1

≡ 0 =⇒ 1
2 1

≡ 0

With all rotations and reflections, we get:

V B
1
2 1

W B
1

1 2
X B 2

1
1 Y B 1 2

1

So V ≡W ≡ X ≡ Y ≡ 0, and one can also see, that Y =W +X −V . It is easy to see using
the observation in Figure 17.1b that no matter where the L shape lies, it can be shifted
to the small 2x2 grid, and then it is congruent to V , W , X or Y .

Proposition 17.2. For all A ∈ A there exists an s ∈ Z and t ∈ {0,1,2,3} such that

A ≡ 0 0
s t
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17.2 The power of homology

Proof. Observe that

A ≡ a b
c d

− aV − bW = 0 0
s′ t′

and 2V +W −X = 0 0
4 4

and so it holds:

A ≡ 0 0
s′ t′

≡ 0 0
s′ t′

−
⌊
t′

4

⌋
0 0
4 4

≡ 0 0
s t

with s ∈ Z and t ∈ {0,1,2,3}, and so we have shown that the homology group is
isomorphic to a subgroup of Z×Z4.

Theorem 17.3.
H(L) � Z×Z4

Proof. We have to show, that for s ∈ Z and t ∈ {0,1,2,3} it holds that

s t ≡ 0 0 mod 〈L〉 ⇐⇒ s = t = 0

”⇐” is clear.
”⇒”: Let s t ∈ 〈L〉. Then there exists a family of L shapes placed in the grid

whose sum is s t . Each of these L shapes is congruent to one of V , W , X, or Y ,
where Y = X +W −V which means

0 0
s t

= avV + awW + axX

This yields the following equation system:

(left top) 2ax + av = 0 (17.21)
(right top) ax + aw = 0 (17.22)

(right bottom) 2aw + av = t (17.23)
(left bottom) 2av + ax + aw = s (17.24)

(17.21)− 2(17.22) av − 2aw = 0 (17.25)
(17.23)− (17.25) 4aw = t ⇒ 4|t⇒ t = 0

(17.24)− (17.22)− 2(17.25) 4aw = s ⇒ s = t = 0

17.2 The power of homology

As we have seen in the previous lecture (Figure 16.13), there are regions congruent to
zero in the homology group, that are not tileable by the corresponding tiles. In this
section we will see another family of such regions, this time untileable by Z tiles (see
Figure 17.3):
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17. Homology and the Aztec Diamond

Figure 17.3: The Z tile

Definition 17.4. The Aztec Diamond A(k) of size k is the region of cells having a corner
at most k − 1 horizontal and/or vertical steps away from the origin.

Observation. The Aztec Diamond A(k) covers
(k+1

2
)

cells in each quadrant, that is
2k(k + 1) cells in total.

(a) A(1)

(b) A(2)
(c) A(3)

k

(d) A(k)

Figure 17.4: Aztec Diamonds of size 1, 2 and 3 and a schematic drawing of an Aztec Diamond
of size k

For an illustration of the Aztec Diamonds, see Figure 17.4 We will now state a
theorem and try to prove as much of it as possible using homology.

Theorem 17.5. For all k ∈ N there is no tiling of A(k) by Z tiles.

At first we look at k = 3 and see that A(3) ≡ 0 mod 〈Z〉, because we have

with

= + + −

Starting from this example we can extend the construction to go from the Aztec
Diamond of size 4s + 3 to size 4(s + 1) + 3 for all s ∈ N as illustrated in Figure 17.5
and from the Aztec Diamond of size 2n+ 1 to size 2(n+ 1) as pictured in Figure 17.6.
Together this implies that A(k) ≡ 0 mod 〈Z〉 for all k ≡ 0,3 mod 4. Hence, the cases
k ≡ 0,3 mod 4 of Theorem 17.5 are not provable via homology.
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17.2 The power of homology

A(4s− 1)

C

B

B

B

C’

B’

B’

B’

(a) A schematic expansion from an Aztec Diamond of size 4s − 1 to size 4s+ 3

(b) Tiling of a B-region
(c) Tiling of a C-region

Figure 17.5: Scheme of expanding an Aztec Diamond of size 4s − 1 to size 4s+ 3 using a single
tiling of a C-region, 4s − 1 tilings of B-regions, and their mirror images B’ and C’
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17. Homology and the Aztec Diamond

A(2n+ 1)

Figure 17.6: Scheme of expanding an Aztec Diamond of size 2n+ 1 to size 2(n+ 1)

With the following proposition we show that the remaining cases of the theorem
can, in contrast, even be proven with a coloring argument.

Proposition 17.6. A(k) has no tiling with Z tiles for k ≡ 1,2 mod 4.

Proof. We color the 4 center squares and then every other 2 × 2-block green in a
chessboard manner as seen in Figure 17.7. Since k ≡ 1,2 mod 4, this results in all
green blocks being completely inside the Aztec Diamond whereas some of the white
blocks at the boundary might be partially contained.

Figure 17.7: Green-white colored Aztec Diamond of size 5

Now suppose that there is a tiling. We distinguish two types of Z tiles in the tiling,
one type is covering 1 white and 3 green cells and the other is covering 1 green and 3
white cells. We denote the number of Z tiles of the two types in the tiling by a and b
respectively:

a+ b = #(tiles) =
#(cells of the Aztec Diamond)

4
=

(
k + 1

2

)
3a+ b = #(green cells) ≡ 0 mod 4

=⇒
(
k + 1

2

)
= #(green cells)− 2a ≡ 0 mod 2

=⇒ k ≡ 0,3 mod 4 E

The existence of a proof using the coloring criterion implies the existence of a proof
using homology. It is a good exercise to transfer the proof to this setting.
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Lecture

18
Homotopy and Counting Tilings

In the last lectures we saw 3 criteria for untileability of regions. In this lecture we will
see a 4th criterion. We then move on to tiling problems where the focus is on counting.

18.1 Homotopy

To explain the concept of homotopy we again use tiles which are unions of grid-cells.
Given a tile T and a starting point s on its boundary we get a boundary word ω by
walking counter-clockwise around its boundary as seen in an example in Figure 18.1,
where x marks a step to the right (on the x-axis) and y a step up (on the y-axis). The
left and down steps are x̄ and ȳ respectively, they are the inverse elements of x and y
in the (non-abelian) free group 〈x,y〉 generated by x and y.

w = xxyx̄yx̄x̄ȳxȳ

Figure 18.1: a z-shaped tile and its boundary word. The starting point is marked.

Given a point s0 in Z×Z and a word α representing a s→ s0 path. Then the conjugate
αωα−1 of ω is a boundary word for the tile T placed such that its starting point is at
s0. Hence, if we want to identify all translates of a tile in a plane with fixed starting
point we can consider conjugate words to be equal. This equivalence/equality will be
used in the sequel.

Theorem 18.1. Let R be a region with simple boundary (no holes) and with boundary
word ωR. If R has a tiling with translates of tiles K1, . . . ,Kr with boundary words ω1, . . . ,ωr .
Then there are conjugates ω̃i of ωi for i ∈ [r] such that

ωR = ω̃1 . . . ω̃r

holds in the free group 〈x,y〉 with the equivalence given by conjugation.

Proof. Recall that changing the starting point corresponds to a conjugation. Also note
that if qωq̄ = ω̃1 . . . ω̃s, then ω = q̄ω̃1q . . . q̄ω̃sq. Now we are ready for the inductive
proof of the theorem.
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18. Homotopy and Counting Tilings

Induction base (r = 1): Since changing the starting point on the tile is a conjugation,
we can assume, that the starting points of the tile and the region are alike. Shifting
the tile to the position of R is another conjugation, i.e., ωR = αωT ᾱ = ω̃T .

Induction step: Color the tiles of the existing tiling of R with colors 1 and 2 such
that the tiles of each color form a connected region and both color classes contain a
part of the boundary of R. Let c be the word representing the boundary between the
two regions R1 and R2. Figure Figure 18.2 illustrates the situation.

b2b1 c

Figure 18.2: The path c splits R into two smaller regions R1 and R2.

Up to conjugation we can assume that the start of c is the starting point for R1 and
R2. By induction we get two boundary words

ωR1
= cb1 = ω̃1 . . . ω̃s

ωR2
= b2c̄ = ω̃s+1 . . . ω̃r

which yields ωR =ωR1
ωR2

= cb1b2c̄ = ω̃1 . . . ω̃r .

Observation (Criterion 4). Let G be a group such that the boundary words of tiles (and
their conjugates) are the identity 1G in G. Then

ωR , 1G =⇒ R has no tiling.

Example 34. Tiling with triominoes and crosses, as depicted in the following picture.

Figure 18.3: The two tiles called triomino and cross.

Observation. There is no homology proof for untileability since we can use the tiles to
generate a single cell (see the following figure), thus the homology group is the whole
free abelian group on the infinite grid.
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18.1 Homotopy

+ − =

We claim that an n×m rectangle is untilable if 3 - nm. If we can show the claim for
n ≡m ≡ 1 mod 3, then it implies the claim for all 3 - nm: we can combine copies of an
n×m rectangle to get an n′ ×m′ rectangle with n′ ≡m′ ≡ 1 mod 3.

The idea is to use a homomorphism from 〈x,y〉 to the symmetric group S5. The
homomorphism is defined by the images of the generators, we use x→ (123)(4)(5)
and y→ (1)(2)(345). Then boundary words of all tiles are the identity in the subgroup
G of S5 which is the image of 〈x,y〉, see Figure 18.4. Since the images of x and y are
permutations of order 3 we get xy3x̄ȳ3 = xx̄ = 1G, to verify the claim for the cross is
more tedious.

(a) xy3x̄ȳ3 = 1G

(b) ȳx3yx̄3 = 1G

(c) xyxyx̄yx̄ȳx̄ȳxȳ = 1G

Figure 18.4: The tiles and their boundary words.

The boundary word of the n×m rectangle is not the identity, since for n = 3k+ 1 and
m = 3l + 1 we get

x3k+1y3l+1x̄k+1ȳ3l+1 = xyx̄ȳ , 1G

To show the power of homotopy arguments we now restate and prove Theorem 17.5:

Theorem 18.2. For all k ∈ N there is no tiling of A(k) by Zs.

Proof. There are eight different placements of the tile Z with different boundary
words, one of them is ωZ1

= x2yx̄yx̄2ȳxȳ, the others are obtained by exchanging
x ↔ y and/or x ↔ x̄ and/or y ↔ ȳ. The boundary word of the Aztec diamond is
ωA(n) = (xy)n(yx̄)n(x̄ȳ)n(ȳx)n. We look at this word in a different grid Γ # shown in
Figure 18.5. Consider a ray with a starting point in aside a cell c which contains
a point p which is moving along the boundary of a region R in counter-clockwise
direction. The winding number of the region R and cell c is the number of times this
ray winds around c in a counter-clockwise way minus the number of times it does
so in a clockwise way. We now consider winding numbers of boundary paths with
respect to all cells of the grid Γ #:

w(Zi , c) =


+1 for a unique cell c1

i

−1 for a unique cell c2
i

0 for all the other cells

, w(A(n), c) =

bn2c for the 4 cells
of a 2× 2 square

0 for all the other cells.
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18. Homotopy and Counting Tilings

Figure 18.5: The second grid Γ #

Let G◦ be the subgroup of words in 〈x,y〉 which correspond to closed walks in Γ #.
Note that if ω ∈ G◦, then conjugates of ω also belong to G◦. Now consider the
map φ from G◦ to Z which sends ω to the sum of winding numbers of all cells, i.e.,
φ(ωR) =

∑
cw(R,c). Note that φ is a homomorpism. Now φ(ωZi ) = +1− 1 = 0 for all

placements of the tile Z while φ(ωA(n)) = 4bn2c , 0. Hence A(n) has no tiling with Z
tiles.

18.2 Counting Tilings

In many cases the existence of a tiling is rather obvious, e.g., for domino tilings of a
n×m board with even n·m. In such cases it is of interest to study how many tilings there
are. Indeed the question was investigated since the 60s by researchers in statistical
physics. The following theorem is due to Elkies, Kuperberg, Larsen and Propp, 1992.

Theorem 18.3 (Aztec Diamond Theorem). A(n) has 2(n+1
2 ) domino tilings.

Several proofs of the theorem have been given by Elkies et al. later additional proof
have been published. We will see complete proofs later but now we start with a sketch
of a proof using a technique called domino shuffling.

Proof. We color the cells of the plane black and white in chessboard fashion. We also
color points with coordinates (x,y) red if x+ y is even. Assuming that the cell spanned
by (0,0) and (1,1) is white the even points at the cells are as in Figure 18.6.

Figure 18.6: The red (even) points at a black and a white cell.

For dominos we define the shuffling directions as shown in Figure 18.7.
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18.2 Counting Tilings

Figure 18.7: shuffling direction for each kind of domino

Figure 18.8: The green dominoes form a reduced partial tiling.

A blank block/bad box/BB is a 2× 2-block with even center. Call a partial tiling of
A(n) reduced if (1) it has no BB covered by two dominoes and (2) the free room can be
tiled by BBs. Figure 18.8 shows an example of a reduced partial tiling.

Now shuffling means to move every domino of a reduced partial tiling one step in
the shuffling direction. The following main Lemma will be partially proved later.

Lemma 18.4 (Shuffling Lemma). Shuffling is an involution on reduced tilings of the whole
plane Z×Z.

The lemma is crucial in the proof of the following proposition.

Proposition 18.5.

# Domino tilings of A(n) = 2n ·# Domino tilings of A(n− 1)

Remark. This implies the theorem because

# Domino tilings of A(n) = 2n2n−1 . . .22#(Domino tilings of A(1)) = 2(n+1
2 )
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18. Homotopy and Counting Tilings

Proof of Proposition 18.5. we extend the partial tiling of A(n) to a partial tiling of Z×Z
as seen in Figure 18.9, the extension consists of two walls in the upper and lower
halfplane and a slab of height two separating them which can be covered by BBs.
Apply the shuffle to each domino of this partial tiling, this yields a partial tiling of
A(n−1) with as many dominoes as in the preimage, the partial tiling of A(n). Hence
because the total area decreased by 2(n+ 1)n−2n(n−1) = 4n, the number of BBs in the
area of the Aztec diamond has been reduced by n.

Figure 18.9: The extension of A(3).

Now given a reduced tiling T (n) of A(n) with k BB’s we can extend it to 2k different
complete tilings by filling in the BB’s using the two possible orientations of the
dominos filling a BB. On the other hand, from every complete tiling we can determine
which reduced tiling it came from by just deleting any adjacent pair of dominos that
shares an even vertex in the middle. This concludes the claim since reduced tilings
in A(n) are in bijection with reduced tilings in A(n− 1) and the shuffling reduces the
number of BBs inside the Aztec diamond by n.

Partial proof of Lemma 18.4. Let T be a reduced partial tiling and let S be the shuffling
operation. We then have to show

1. S(T ) is a partial tiling (no dominoes overlap)

2. S(T ) covers no BB with parallel dominoes

3. the free space of S(T ) can be covered by BBs

4. S(S(T )) = T

Items 1,2, and 3 imply that S(T ) is a reduced partial tiling, while 4 says that S is an
involution. We will indicate the proofs of 1,2, and 4, the proof of 3 is more involved.
We refer to M. Aigner ”A course in enumeration” (pages 44–50) for a complete proof.
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18.2 Counting Tilings

s s

Figure 18.10: Proof of Item 1 of Lemma 18.4: The domino covering s would complete a BB.

Item 4 is easy to see from the definition. Item 2 follows directly, too: Assume there
is a BB covered by a pair of dominoes, then that BB was covered by a pair of dominoes
in the preimage. For Item 1, suppose a cell s is covered by the shuffles of two dominos.
Then both of these dominoes share a (different) middle red vertex with s, which has
two such vertices. Without loss of generality s is white (otherwise rotate the image by
π/2) and the domino at the left red vertex is vertical (otherwise reflect along the line
through the two red vertices). There are 2 cases left, see Figure 18.10. In each of them
the initial tiling cannot have been reduced.

131



Combinatorics, TU Berlin, SoSe 2021

Lecturer: Stefan Felsner
Transcript: Leon Ludwig
Date: 2021/06/17

Lecture

19
Aztec Tiling Continued

Recall the Aztec diamond Theorem (Theorem 18.3). We begin the lecture by restating
it and then continue with a complete proof. For the use in the proof we will need the
Lemma of Lindström-Gessel-Viennot which is an extremely nice piece of combinatorics
in its own right.

Theorem 19.1 (Aztec diamond theorem). #domino tilings of A(n) = 2(n+1
2 )

We lay the basis of our proof with something seemingly unrelated.

19.1 Schröder paths and Schröder numbers

Definition 19.2. A Schröder path is a path composed of steps (1,1), (1,−1) and (2,0).
The starting point is (0,0) and the path is confined to the upper half-plane. The
Schröder number Sn is given by Sn = #Schröder paths from (0,0) to (2n,0).

S1 = 2 S2 = 6

S3 = 22, S4 = 90, S5 = 394, . . .

Proposition 19.3. The Schröder numbers Sn for n ∈ N satisfy the recursion

Sn = Sn−1 +
n−1∑
k=0

SkSn−k−1
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19.1 Schröder paths and Schröder numbers

Proof. Given a Schröder path from (0,0) to (2n,0) we look at two cases, depending
on whether the first step is a horizontal step (2,0) or a diagonal upwards step (1,1).
In the first case the remaining path will be a Schröder path from (2,0) to (2n,0) for
which there are Sn−1 possibilities. In the second case we start with a diagonal upwards
step (1,1), which means we are now at height 1 on our path. The path has to go down
to height 0 eventually. Look at the first point where the path is at height 0 again. This
happens with a diagonal downwards step (1,−1).

Sn−1

(a) 1st step is horizontal

2k
2n− 2k − 2

(b) 1st step is diagonal upwards

Figure 19.1: the two cases for the recursion.

As indicated in Figure 19.1 we can decompose the path into two Schröder paths,
one above height 1 of length 2k for some k ∈ {0,1, . . . ,n− 1} and the second which is
just the original path after the zero, its length is 2n− 2k − 2. For fixed k there are Sk
possibilities for the first and Sn−k−1 possibilities for the second part. Summing over k
and adding this to the options for the first case yields the recursion.

A related family of paths is given by the following definition.

Definition 19.4. A small Schröder path is a Schröder path without horizontal steps on
the x-axis. We let ŝn = #small Schröder paths from (0,0) to (2n,0).

ŝ1 = 1, ŝ2 = 3, ŝ3 = 11, ŝ4 = 45, ŝ5 = 197, . . .

Proposition 19.5. The number of small Schröder paths is half the number of Schröder
paths, i.e.

Sn = 2ŝn ∀n > 0

There are several proofs of this, for example with the help of generating functions,
we will give a simple bijective proof.

Proof. We will find a bijection for fixed n between Schröder paths with some horizontal
steps on the x-axis and small Schröder paths. Now the first set has size Sn − ŝn and the
second set has size ŝn, hence, if there is such a bijection the claimed identity holds.

Given a Schröder path with some horizontal steps on the x-axis we look at the first
horizontal step H and separate the Schröder path into paths A which is everything
before H and B which is everything after H . Then A has by definition no horizontal
steps on the x-axis, while B could still have some. To get a small Schröder path we
take A, add a diagonal upwards step after A, put B after that step (essentially raising B
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19. Aztec Tiling Continued

by 1), then a diagonal downwards step after B. This gives us a small Schröder paths
from (0,0) to (2n,0), since H was deleted and replaced by a diagonal upwards and
downwards step which now surround a raised B, leaving no horizontal steps on the
x-axis.

A B

(a) Schröder path with some horizontal
steps on the x-axis

↔

A
B

(b) small Schröder path

On the other hand, given a small Schröder path we can go back to a Schröder path
with some horizontal steps on the x-axis by looking at the last zero of the path before
(2n,0), which will be (2k,0) for some k ∈ {0,1, . . . ,n−1}. Then A will be the path from
(0,0) to (2k,0) and B the path from (2k+1,1) to (2n-1,1). Taking A, adding a horizontal
step after, and a lowered B after that gives the intended map. Actually, the two maps
are inverse to each other, so we have the claimed bijection.

Next we make a connection between families of non-intersecting Schröder paths
and domino tilings of the aztec diamond. We claim that domino tilings of A(n) are
in bijection with the families of n non-intersecting Schröder paths p1, . . . ,pn where
pi : ai → bi with ai = (−2i + 1,0) and bi = (2i − 1,0). Here is an example of a tiling of
A(5) illustrating the mapping.

-1 1-3 3-5 5-7 7-9 9

a5 a4 a3 a2 a1 b1 b2 b3 b4 b5

Family of Schröder paths

Apply to each domino of the tiling
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19.1 Schröder paths and Schröder numbers

To get from an Aztec diamond tiling to a family of non-intersecting Schröder paths
we draw red segments in dominoes as shown in the figure above. Note that the paths
do not end inside the tiling: every horizontal contact of two dominoes such that the
left cell is white gives rise to a connection of two segments while no other contact of
dominoes does. We then extend the paths diagonally down to the base line (x-axis). In
a tiling of A(n) we have one path entering the diamond in each of the black cells of the
lower left slope and a path leaving the diamond in each white cell on the lower right
slope. Therefore this gives us paths ai to bi for i ∈ {1,2, . . . ,n}. The Schröder paths will
not intersect, since they don’t do that while just going down outside and inside, each
domino only contains a single segment.

Starting from a collection of disjoint Schröder paths, we add vertical dominoes
and horizontal black-white dominoes to reflect the steps of the Schröder paths. If a
horizontal contact of a left white and right black cell does not take part in any path,
we cover it by a white-black horizontal domino. This completes the proof that there is
a bijection T ←→ p1, . . . ,pn as claimed.

Let FS(n) = # families of non-intersecting Schröder paths (p1, . . . ,pn) with pi :
(ai ,0)→ (bi ,0). Then the bijection from above tells us that

FS(n) = # domino tilings of A(n).

Next let F̂S(n) = # families of non intersecting small Schröder paths (q1, . . . , qn) with
qi : (ai ,0)→ (bi ,0).

Claim: FS(n) = F̂S(n+ 1)

Proof. Given a family of non intersecting Schröder paths (p1, . . . ,pn) we find a bijection
to a non intersecting family of small Schröder paths (q1, . . . , qn+1) by first raising, and
then extending the paths pi to the paths qi+1 so that they no longer have a horizontal
step on the x-axis. First each path pi will be raised by 2, so it now goes from (ai ,2)→

-1 1-3 3-5 5

(a) Family of 3 nonintersecting Schröder
paths

↔

-1 1-3-5-7 3 5 7

(b) Family of 4 nonintersecting small Schröder paths

(bi ,2). Then each path will be extended diagonally to the x-axis, so two diagonal
upwards steps are added before each path, and two diagonal downwards steps are
added after each path. The path qi+1 obtained from pi goes from (ai −2,0)→ (bi + 2,0),
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19. Aztec Tiling Continued

which means qi+1 : (ai+1,0)→ (bi+1). It remains to introduce a path q1 which will be
the path from a1 = −1 to b1 = 1 given by an upwards step followed by a downwards
step. To get back from the family of small Schröder paths (q1, . . . , qn+1) to the paths
we had before, we just delete the bottom two layers of nodes at height 0 and 1, and
shift all the paths down by 2, and rename the shortened qi+1 to pi . The removal of the
bottom two layers also gets rid of q1 in the process.

We have seen a relation between Sn and ŝn now we come to a relation between
families of non-intersecting paths of Schröder and small Schröder paths. Using this
we will complete the proof of Theorem 19.1.

We use a result which comes from the Lemma of Lindström Gessel-Viennot, which
we will be shown in the next subsection. The lemma tells us that we can express the
respective numbers of families of non-intersecting path as determinants as follows:

FS(n) = det


S1 S2 S3 . . . Sn
S2 S3 S4 . . . Sn+1

Sn Sn+1 Sn+2 . . . S2n−1

 F̂S(n) = det


ŝ1 ŝ2 ŝ3 . . . ŝn
ŝ2 ŝ3 ŝ4 . . . ŝn+1

ŝn ŝn+1 ŝn+2 . . . ŝ2n−1


Recalling that Sn = 2ŝn we get that the matrix for FS(n) is twice that of F̂S(n) in

every entry. Since the determinant is linear in each column we get FS(n) = 2nF̂S(n).
This is the key equation in the following chain of equations:

#DT of A(n) = FS(n) = 2nF̂S(n) = 2nFS(n− 1) = 2n#DT of A(n− 1)

Now #DT of A(n) = 2n#DT of A(n− 1) = 2n+(n−1)+...2#DT of A(1) = 2(n+1
2 ).

19.2 Lemma of Lindström Gessel-Viennot

We need to set up some terminology before we get to the statement of the lemma.
Let G = (V ,E) be a directed acyclic graph with a weight function ω : E → R. We

consider two sets of vertices A = a1, . . . , an and B = b1, . . . , bn, and define P (i, j) = set
of all paths ai → bj in G. From this data we associate a path matrix, which is an
n×n-matrix M = (mi,j), with

mi,j =ω(P (i, j)) =
∑

P ∈P (i,j)

ω(P ),

where
ω(P ) =

∏
e∈P

ω(e).

So we multiply the edge weights along a path to get the weight of the path. Then
summing over the weights of the paths going from ai to bj gives us the entry mi,j of
the path matrix.
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19.2 Lemma of Lindström Gessel-Viennot

Let π ∈ Sn and Pπ(A,B) be the set of path systems (P1, . . . , Pn) where Pi : ai → bπ(i) is
a path from ai to bπ(i). We define P (A,B) =

⋃
π∈Sn P

π(A,B), as the collection of all path
systems from A to B, and PVD as the subset of vertex disjoint path systems, i.e. path
systems (P1, . . . , Pn) where the paths are pairwise vertex disjoint.

The weight of a path system (P1, . . . , Pn) is given by

n∏
i=1

ω(Pi)

and the sign of a path system is defined as sgn(P1, . . . , Pn) = sgn(π) (recall that each
path system is in a unique Pπ(A,B) for some π ∈ Sn).

Lemma 19.6 (Lindström Gessel-Viennot). Using the above definitions above

det(M) =
∑

P ∈PVD (A,B)

sgn(P )ω(P ).

Proof. By the Leibniz formula for determinants

det(M) =
∑
π∈Sn

sgn(π)
n∏
i=1

mi,π(i).

Expanding the product we get

n∏
i=1

mi,π(i) =
n∏
i=1

 ∑
Pi∈P (i,π(i))

ω(Pi)

 =
∑

P ∈Pπ(A,B)
P=(P1,...,Pn)

 n∏
i=1

ω(Pi)

 =
∑

P ∈Pπ(A,B)

ω(P ).

From this we get

det(M) =
∑

P ∈P (A,B)

sgn(P )ω(P ).

This is already quite close to what we want to show in the Lemma. However the
sum still contains intersecting paths systems. We will use an involution on the set
of intersecting path systems to show that their contribution to det(M) is zero. The
clue is that the involution is sign reversing and weight preserving. This will have the
effect that intersecting path systems will be paired up by the involution, one with the
negative weight of the other so that they cancel each other in the sum.

Given an intersecting path system (P1, . . . , Pn) ∈ Pπ(A,B) for some π there exist i , j
such that Pi ∩ Pj , ∅. Let i0 be the minimum index such that there exists a j so that
Pi0 ∩ Pj , ∅. Then let x be the first vertex along Pi0 which also belongs to some other
Pj and let j0 be the smallest index such that Pj0 meets Pi0 in x. This makes sure that
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19. Aztec Tiling Continued

the indices of i0 and j0 are uniquely defined because ((i0,x, j0) is lexicographically
minimal). The involution P = (P1, . . . , Pn)→ P̃ = (P̃1, . . . , P̃n) is defined as follows:

P̃i0 = Pi0
∣∣∣ init. piece

up to x
∪ Pj0

∣∣∣
from x to bπ(j0)

P̃j0 = Pj0
∣∣∣ init. piece

up to x
∪ Pi0

∣∣∣
from x to bπ(i0)

and the remaining paths stay the same

P̃i = Pi ∀i < {i0, j0}.

x
ai0

aj0

bπ(i0)

bπ(j0)
Pi0

Pj0

7→
x

ai0

aj0

bπ(i0)

bπ(j0)
P̃i0

P̃j0

Figure 19.2: Sketch of how the involution applies to paths Pi0 and Pj0

This is an involution, because after applying it the index i0 is still the smallest index
of a path that intersects some other path of the family P̃ , vertex x is still the same
and j0 is still the smallest index of a path through x (other than i0). So applying it
again makes ˜̃Pi0 = Pi0 and ˜̃Pj0 = Pj0 .

It remains to argue that the involution is sign-reversing and weight-preserving. The
sign is dependent on the sign of the permutation, and applying our involution swaps
the endpoints of two of the paths, which means that we apply a transposition to swap
π(i0) and π(j0) so the sign of the path system will be reversed. And the weight stays
the same, because the weight of a path system is just the product of the weights of all
the edges in it (with multiplicities). The multiset of edges in Pi0 ∪ Pj0 did not change.

The involution shows that the intersecting path systems cancel out in the Leibniz
expansion of det(M). This leaves only the vertex disjoint path systems, whence

det(M) =
∑

P ∈PVD (A,B)

sgn(P )ω(P ).

We stated earlier that we can use the lemma of Lindström Gessel-Viennot to get that

FS(n) = det


S1 S2 S3 . . . Sn
S2 S3 S4 . . . Sn+1

Sn Sn+1 Sn+2 . . . S2n−1


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19.2 Lemma of Lindström Gessel-Viennot

and similarly for F̂S(n). We consider the directed triangular grid graph consisting of
all possible steps, see Figure 19.3. This will give us the number of Schröder paths from
ai to bj . To argue for that assign a weight of 1 to each edge. Then the entry mij of the
path matrix will just count the number of paths from ai to bj . Each path system will
then also have a weight of 1. Further, any permutation other than the identity does
not appear in the sum, since there is no way for any other permutation to give a set of
non-intersecting paths. So the left side counts FS(n), the number of non-intersecting
path families.

Figure 19.3: The directed acyclic graph on which the Schröder paths live

We conclude the lecture with another application of the lemma. The LGV lemma
can be used in two ways. We can compute a determinant to understand combinatorial
counting functions (this was done above) or can use combinatorial insights to evaluate
a determinant (this is done below).

Theorem 19.7.

det

((
i + j
i

))
0≤i,j≤n−1

= 1

Proof. We look at the directed grid graph of the first quadrant, where orientations of
edged imply that a path can only go right or down. The number of paths fromAi = (0, i)
to Bj = (j,0) is

(i+j
i

)
, since there are i+j steps in total and i of those are downward steps.

If we assign each edge a weight of 1 this gives us the entries of our path matrix. The

B0B1B2B3
A0

A1

A2

A3

Lemma of Lindström Gessel-Viennot tells us that the determinant of the path matrix
is equal to the number of non-intersecting path systems from A = {A0, . . . ,An−1} to
B = {B0, . . . ,Bn−1}. By the planarity of the graph vertex disjoint path systems can only
exist for π = id, i.e., with paths connecting Ai to Bi for all i. It is evident that there is
only one choice for the path A0→ B0 having fixed this path there is only one choice
for the path A1→ B1 and so on. In effect the path family is unique.
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Lecture

20
Binet-Cauchy Formula and Pólya
Theory

We start this lecture by proving the Binet-Cauchy formula which is another application
of the Lindström-Gessel-Viennot Lemma, and then start with a new chapter on Pólya
theory.

Theorem 20.1 (Cauchy-Binet formula). Given two matrices P ,Q ∈ Rr×s with r ≤ s it
holds true that

det(PQT ) =
∑

C⊂[s],|C|=r
det(PC)det(QC),

where MC denotes the restriction of a Matrix M to the columns selected by C.

Proof. First construct a directed graph G as follows: there are three disjoint sets of
vertices {A1, . . . ,Ar}, {I1, . . . , Is}, and {B1, . . . ,Br}. The edges are the edges of complete bi-
partite subgraph between {A1, . . . ,Ar} and {I1, . . . , Is} and of a second complete bipartite
subgraph between {I1, . . . , Is} and {B1, . . . ,Br}, the edges are oriented as illustrated in
Figure 20.1.

A1 ArA2

B1 BrB2

I1
Is

I2

Bj

Ik

Ai

pik

qjk

Figure 20.1: The directed graph on the vertices A,B and I , where the subgraph spanned by the
vertices in A,I and B,I respectively forms a complete bipartite graph. The edges AiIk and
IkBj are highlighted, their respective weights are pi,k and qj,k .

The weight of edges is as follows: w(AiIk) := pi,k and w(IkBj) := qj,k = qT k,j , where
pi,k and qj,k are the respective entries of P ,Q.
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20. Binet-Cauchy Formula and Pólya Theory

We construct a path-matrix M = (mi,j) for i, j ∈ [r] where

mi,j :=
∑

P :Ai→Bj

w(P ) =
s∑
k=1

pi,kqj,k = (PQT )i,j .

Hence M = PQT . Recall that for a path-system P the weight w(P ) is the product of the
weights of all the paths in P .

Using the Lemma of Lindström-Gessel-Viennot (Lemma 19.6), we get

det(PQT ) = det(M) =
∑

P∈PVD (A,B)

sgn(P )w(P ), (20.26)

where PVD(A,B) denotes the vertex disjoint path systems from the vertices {A1, . . . ,Ar}
to the vertices in {B1, . . . ,Br} in the graph G. Given a permutation π, the path Pi : Ai →
Bπ(i) of a path system P in Pπ(A,B) contains a middle vertex from {I1, . . . , Is}. Every
tuple of r distinct vertices from I corresponds to a disjoint path system P ∈ Pπ(A,B).
For R ⊂ [s], let IR denote the corresponding subsetset of vertices of I . Given a path
system P ∈ Pπ(A,B) using the vertices of IR as middle vertices we can view the
permutation π as a product of two permutations π1 and π2, where π1 : [r]→ R tells
us which edges from A to IR are used and π2 : R→ [r] which edges from IR to B. For
instance, if r = 3 and s = 17 we could have R = {7,8,15} and paths

A1→ I8→ B3, A2→ I15→ B1, A3→ I7→ B2,

then we see that π = π1 ·π2 with

π1 :=
(

1 2 3
8 15 7

)
, π2 =

(
8 15 7
3 1 2

)
.

Using this idea we can rewrite the right hand side of Equation (20.26):

∑
P∈PVD (A,B)

sgn(P )w(P ) =
∑

R⊂[s],|R|=r

∑
π1,π2

sgn(π1 ·π2)w(P1)w(P2)

=
∑

R⊂[s],|R|=r

∑
π1

sgn(π1)w(P1)
∑
π2

sgn(π2)w(P2)


=

∑
R⊂[s],|R|=r

∑
π1

sgn(π1)w(P1)


∑
π2

sgn(π2)w(P2)


=

∑
R⊂[s],|R|=r

det(PR)det(QR),

where P1 are the respective path systems of subpaths A→ IR, that is Pπ1(A,IR) and P2
the respective path systems of subpaths IR→ B i.e. Pπ2(B,IR).

141



20. Binet-Cauchy Formula and Pólya Theory

A1 AnA2 Ai

B1 BnB2 Bj

Figure 20.2: The bipartite graph on the vertices A1, . . . ,An and B1, . . . ,Bn.

We conclude this chapter with a few remarks.

Remark (Application to derangements). Consider the bipartite graph G = (A,B;E)
where A = {A1, . . . ,An}, B = {B1, . . . ,Bn} and E = Kn,n \ {(Ai ,Bi) | i ∈ {1, . . . ,n}}, as depicted
in 20.2. The vertex disjoint pathsystems in this graph correspond to derangements, as
there is no path Ai → Bi which would be fixed point of the respective permutation. So
the pathmatrix here is given by

M =


0 1 1 1 . . . 1
1 0 1 1 . . . 1
1 1 0 1 . . . 1
...

...
. . .

...
1 1 1 1 . . . 0


Next we can use standard transformations to bring the matrix M into a more suitable
form to determine its determinant via the following operations.


0 1 1 1 . . . 1
1 0 1 1 . . . 1
1 1 0 1 . . . 1
...

...
. . .

...
1 1 1 1 . . . 0


→


0 1 1 1 . . . 1
1 −1 0 0 . . . 0
1 0 −1 0 . . . 0
...

...
. . .

...
1 0 0 0 . . . −1


→


(n− 1) 1 1 1 . . . 1

0 −1 0 0 . . . 0
0 0 −1 0 . . . 0
...

...
. . .

...
0 0 0 0 . . . −1


In the first step the first column has been subtracted from each subsequent col-
umn. In the second step columns 2 to n have been added to column 1. From
the diagonal of the resulting matrix we see that det(M) = (n − 1)(−1)n−1. On the
other hand the Lemma of Lindström Gessel-Viennot (Lemma 19.6) implies that
det(M) =

∑
π∈Sn,π derangement sgn(π). Together this yields:

(n− 1)(−1)n−1 = #(even derangements in Sn)−#(odd derangements in Sn).

For the next remark we need a definition
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20.1 Pólya Theory

Definition 20.2. The permanent of a matrix A ∈ Fn×n is given by

per(A) =
∑
π∈Sn

a1,π(1) · a2,π(2) · . . . · an,π(n).

Remark. Note that the definition of the permanent resemble Leibniz formula for
the determinant, the difference is that the sign of the permutation is missing in the
products.

From the considerations above we see that that per(J − I) = #( derangements in Sn)
where J is the all-one matrix and I the identity.

We know that det can be computed in O(n3); in contrast computing per is #P -
complete, this means that unless unexpected things happen no polynomial algorithm
for the evaluation of permanents exist.

20.1 Pólya Theory

Pólya theory is all about counting with symmetries. It is best understood using some
examples.

Example 35 (Necklaces). Let N (m,k) denote the number of necklaces with m beads
of k colors. One can think of a necklace as a cyclic arrangement of its beads. It is
easily verified that N (1,2) = 2, N (2,2) = 3, N (3,2) = 4, N (4,2) = 6, N (5,2) = 8, and
N (6,2) = 14. We do not differ between rotations of the necklace. In other words
the symmetry group (acting on the necklaces) is the cyclic group Cm. Note that
the symmetry group can also be the dihedral group if turning over (reflecting) the
necklace is not considered to change the necklace either, with this group of symmetries
ND(6,2) = 13.

The general idea is as follows: if you consider the number of ways to color 6
distinguishable beads of a necklace with 3 colors we would get 36 possibilities. But if
you look at it like a necklace then RGBRGB = GBRGBR would be the same coloring
just rotated. Counting with symmetries thus becomes the enumeration of orbits –
equivalence classes – of the relevant group actions; informally said we factor out the
symmetries that we want to count as equal. So if turning the necklace results in the
same coloring, we have to look at the orbits of the action of the cyclic group on the 36

colorings of the necklace.
For example the RRRRRR coloring only appears once while RGBRRB occurs 12

times when we consider symmetric colorings with respect to the dihedral group—
rotations and reflections—to be equal.

We will get into more detail later.

Example 36 (Cube). Given a cube one can ask for the number of colorings of its six faces
with k colors up to rigid transformations of the cube. For k = 2 we get the following
results:

# red faces 0 1 2 3 4 5 6
# colorings 1 1 2 2 2 1 1
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20. Binet-Cauchy Formula and Pólya Theory

The group of the cube can be thought of as all possible rotations of the cube. Now
it turns out that a group element is uniquely determined by looking at the image of
a flag. There are three types of flags given by either (v,e), v ∈ e or (v,f ), v ∈ ∂f or
(e, f ), e ∈ ∂f , where each type leads to exactly 24 flags. For example for the (v,e) flags
we have 8 vertices each incident to 3 edges giving 24 flags. Thus the group has 24
elements, that is 24 symmetries.

As an abstract group the 24 symmetries of the cube are isomorphic to S4. In our
context however we will view it as a subgroup of S6 giving the actions on the faces,
and a subgroup of S8 for actions on the vertices and also as a subgroup of S12 for the
actions on edges. We will get back to this later.

We start with formally introducing some of the concepts already mentioned in the
examples.

20.1.1 Permutation groups and group action

We start with the formal definition of a group action on a set.

Definition 20.3 (Group action). Let (G,�) be a group and let X be some set, then we
say that G acts on X if there is a map α : G ×X→ X such that

(1) α(e,x) = x,

(2) α(g � h,x) = α(g,α(h,x)).

For readability we will write g(x) := α(g,x) which then yields the more concise notation
(g � h)(x) = g(h(x)).

Remark. Note that we can also let a group act on another group or on itself.

Observation. Let G be a group acting on a set X. Then for every g ∈ G the map
g : X→ X, x 7→ g(x) is a bijection on X.

Proof. Suppose that g(x) = g(y) this implies that g−1(g(x)) = g−1(g(y)) which inturn,
using the concatenation of actions of a group, implies that x = e(x) = e(y) = y. This
gives injectivity of the map, where surjectivity immediately follows from the fact that
x = e(x) = g(g−1(x)).

Remark. This implies that one can view the groupG as a subgroup of SX – the symmetry
group of X. In fact every g ∈ G acts as a bijection of X, i.e., as a permutation πg ∈ SX .
from (g � h)(x) = g(h(x)) it follows that πg · πh = πg�h, i.e., the images of G form a
subgroup of SX .

For what comes next we will need the type of a permutation that was already intro-
duced in one of the first lectures. For convenience we repeat the definition.

Definition 20.4 (type of a permutation). Let π ∈ Sn for some n ∈ N. Then the type of π
is given by

type(π) := (b1, . . . , bn),

where bi denotes the number of cycles of length i in π.
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Observation. If π has type (b1, . . . , bn) then
∑n
k=1 kbk = n.

Now we can define the cycle index of G. We will need it later for the Lemma of
Frobenius-Cauchy-Burnside.

The idea behind the cycle index will be to capture fixpoints of the group actions on
color classes. The reflection taking (123456) to (654321) is part of the dihedral group
and as a permutation it can be written as r := (16)(25)(34). Now this permutation has
3 cycles of length 2 that will be remembered as x3

2. Later we will need to ask ourselves:
how many colorings of the six beads will be fixpoints of r if we use 3 colors? The answer
now is obvious: 33: for each 2-cycle we can freely choose a color but we have to color
both beads with that same color. Similarly if we would color the necklase with k colors
this would amount to k3 fixpoints under r. The cycle index polynomial will capture
exactly these cycles for the different actions.

Definition 20.5 (Cycle index of a group). Let G be a finite group acting on an m-set,
i.e., G ⊆ Sm. The cycle index of G (in this action) is defined as

PG(x1, . . . ,xm) :=
1
|G|

∑
g∈G

x
b1(g)
1 · . . . · xbm(g)

m ,

where (b1(g), . . . , bm(g)) is the type of g as a permutation.

Having these definitions at hand we will revisit the cube group.

Example 37. We give a table analysing the action of elements of G (depending on their
nature) on the faces, vertices and edges of the cube.

# of maps element of G action on f. action on v. action on e.
1 e (identity) b1 = 6 b1 = 8 b1 = 12

9 fix a face
6 order 4
3 order 2

b1 = 2, b4 = 1
b1 = 2, b2 = 2

b4 = 2
b2 = 4

b4 = 3
b2 = 6

8 fix a vertex, order 3 b3 = 2 b1 = 2, b3 = 2 b3 = 4
6 fix an edge, order 2 b2 = 3 b2 = 4 b1 = 2, b2 = 5

So for example the second row of the table gives insight on the actions that fix a face.
There is a total of 9 such actions where 6 of these are of order 4, that is the permutation
has a maximum cycle of four. The actions for the cube are rotations and compositions
thereof. Every action that fixes one face will also fix the opposite face giving us two
one-cycles, i.e b1 = 2. Fixing two opposite faces we can rotate the cube by 90◦ once left
or once right to get a 4-cycle for the faces, rotating twice in one direction would give
two 2-cycles since we would simply swap the non-fixed opposite faces. Thus fixing
two opposite faces we can either rotate the cube around the fixed axis to the left or
right giving 2 maps with b1 = 2 and b4 = 1. In total we have 3 different axes that we
can fix and around which we can rotate giving the 6 maps. A similar argument gives
the three order two maps: we fix opposite faces and swap the remaining opposite faces.
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20. Binet-Cauchy Formula and Pólya Theory

Looking at the order 4 maps the action on the vertices becomes quite clear, since fixing
two faces we also fix the vertices lying on that face, thus the map can only interchange
vertices lying on a common face of the two fixed faces. Looking into the action of these
maps (rotation around the fixed axis) we get b4 = 2. Similarly we get b4 = 3 for the
edges.

All in all we get a total of 24 maps which coincides with the 24-element group G.
Given this table we can compute the cycle index of G acting on the faces given by

PGfaces
(x1, . . . ,x6) =

1
24

(x6
1 + 6x2

1x4 + 3x2
1x

2
2 + 8x2

3 + 6x3
2).

We continue with more examples.

Example 38 (symmetric group Sm). For the symmetric group acting on itself the cycle
index can be rewritten as follows.

PSm(x) =
1
m!

∑
(b1,...,bm),

∑
kbk=m

#( perm. of type b ) xb

=
1
m!

∑(
m!

b1!1b1 · . . . · bm!mbm

)
xb

=
∑ m∏

k=1

x
bk
k

bk!kbk

= coefficient of zm in
m∏
k=1

∑
n≥0

xnk
n!kn

zkn

= coefficient of zm in
m∏
k=1

∑
n≥0

1
n!

(
xkz

k

k

)n
= coefficient of zm in

m∏
k=1

exp
(xk
k
zk

)
,

= coefficient of zm in exp
(
x1z+

x2

2
z2 +

x3

3
z3 + . . .

)
,

where x,b are vectors, and xb is shorthand for xb1
1 · . . . · x

bm
m .

We conclude this lecture with a last example.

Example 39 (The cyclic group Cn). For the cyclic group the order of each group element
is a divisor d of n and its type is given by bd = n

d , so the element decomposes into
cycles of the same length.

We get

PCn(x) =
1
n

∑
d|n
ϕ(d)xn/dd ,

where ϕ(d) = #( of group elements of order d in Cn ) is also known as Euler’s Phi-
function. One can show that ϕ(d) = #(s < d | gcd(s,d) = 1).
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Lecture

21
Pólya Theory (continued)

We continue with Pólya Theory. Last lecture we discussed the cycle index polynomial
PG of a group G acting on a set.

The first lemma will give us an efficient way to determine the number of orbits of a
group acting on a set; that is we get an efficient way to determine the number of color
classes with respect to symmetries given by G (recall the Necklace example from last
lectrue).

21.1 Lemma of Cauchy-Frobenius-Burnside

Given a group G acting on a set X, this induces an obvious equivalence relation given
by

x ∼ y⇔∃g ∈ G g(x) = y.

Reflexivity comes from the identity 1G ∈ G, symmetry from the inverse g−1 ∈ G and
transitivity by the fact that (g ◦ h)(x) = g(h(x)) and g,h ∈ G implies that g ◦ h ∈ G.

The equivalence classes of this relation are the orbits of the action. We write

OG(X) = {orbits of the action of G on X } = { [x]∼ | x ∈ X }

If we fix x ∈ X there is a stabilizer subgroup

Gx = {g ∈ G | g(x) = x }.

For g ∈ G there is the set of fixed points

Fix(g) = {x ∈ X | g(x) = x }

Lemma 21.1 (Cauchy-Frobenius-Burnside). The number of orbits of the action of G on
the set X is given by

|OG(X)| = 1
|G|

∑
g∈G
|Fix(g)|

Proof. We double count the pairs (g,x) with g(x) = x. We can express this number in
two ways, this yields the identity:∑

x∈X
|Gx| =

∑
g∈G
|Fix(g)|,
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21. Pólya Theory (continued)

We will focus on the left side of the equation.
DefineGx→y = {g ∈ G | g(x) = y } for some x,y in X. Now observe that eitherGx→y = ∅

or Gx→y = hGx for some h with h(x) = y. For the second case Gx→y is a coset of the
stabilizer subgroup. In particular |Gx→y | = |Gx|, and we are in the second case if and
only if y ∈ Orbit(x) = {g(x) | g ∈ G }. From this we see that for each x the size of the
group is the size of the stabilizer times the size of the orbit

|G| = |Gx| · |Orbit(x)| ∀x ∈ X.

Then we get ∑
g∈G
|Fix(g)| =

∑
x∈X
|Gx| = |G|

∑
x∈X

1
|Orbit(x)|

= |G| · |OG(X)|.

In the last equality we use the fact that every orbit of G on X contributes 1 to the sum,
and the set of orbits of the action of G form a partition of X.

Applications of the lemma: Colouring edges of the cube with 3 colours.
Two colourings are considered the same, if they belong to the same orbit, in our case if
they can be transformed by a rigid motion into each other. Conversely colourings are
different if and only if they belong to different orbits.

#colourings = #orbits =
1
|G|

∑
g∈G
|Fix(g)|

=
1

24

∑
type b

(#perm. g of type b)(#colourings fixed by perm. g of type b︸                                              ︷︷                                              ︸
3#cycles=3

∑
bi

)

=
1

24
(1 · 312 + 6 · 33 + 3 · 36 + 8 · 34 + 6 · 37)

= 22815

see Example 37 for the values used for the computation.

Example 40. Necklaces with 2 types of beads with rotational symmetry correspond to
orbits of [2][n] (note that when we take one set raised to another it is defined as the
set of functions from the raised set to the ground set, so in this case we get the set
of functions from [n]→ [2] which can be represented as 0,1-vectors of size n) under
action of Cn (cyclic group).

#necklaces =
1
n

∑
g∈Cn

|Fix(g)|

=
1
n

∑
type b

(#perm. g of type b)(#elem. of [2][n] fixed)

=
1
n

∑
d|n
ϕ(d)2

n
d
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21.1 Lemma of Cauchy-Frobenius-Burnside

Recall that ϕ(d) = |{s ≤ d | gcd(s,d) = 1 }| is Euler’s Phi-function from last lecture.

Definition 21.2. In general we are given a group G acting on a set D, and a ”set of
colors” R. Two colorings f1, f2 ∈ RD of the elements in D are G-indistinguishable if there
exists a g ∈ G such that f1 ◦ g = f2.

This yields a G action on RD . Applying the C-F-B Lemma again we get

#classes =
1
|G|

∑
g∈G
|Fix(g)| = 1

|G|

∑
g∈G
|R|#orbits(g)

=
1
|G|

∑
g∈G
|R|

∑
bi =

1
|G|

∑
b type of some g∈G

(#g of type b) · |R|
∑
bi

= PG(|R|, |R|, ..., |R|)

The following theorem is the abstraction of what we have seen in the examples of
colorings of the faces of a cube and of necklaces.

Theorem 21.3. If we have G acting on D, then

#(G indistinguishable r-colourings of D) = PG(r, r, ..., r)

We are going to generalize the theory by looking at Pólya counting with weights.
Consider a weight function ω : R→ A for some ring A and let ω(R) =

∑
r∈Rω(r). For a

colouring f :D→ R we let ω(f ) =
∏
x∈Dω(f (x)).

Lemma 21.4 (weight distribution on RD). With notation as above we get∑
f ∈RD

ω(f ) = ω(R)|D |

Proof. Let R = {r1, r2, ..., rk}, then

ω(R)|D | = (ω(r1) +ω(r2) + ...+ω(rk))
|D | =

∏
x∈D

(ω(r1) +ω(r2) + ...+ω(rk))

and for each f :D→ Rwe get thatω(f ) is a unique summand of the expanded product.
So we get

ω(R)|D | =
∑
f ∈RD

ω(f )

Observation. If f1, f2 belong to the same orbit of the G action (f1 ◦ g = f2) then this
implies ω(f1) = ω(f2). Hence for an orbit F we can define ω(F) := ω(f ) for any f ∈ F.
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21. Pólya Theory (continued)

The goal is to find
∑
F Orbit

ω(F).

Let Λ be a partition of D and let SΛ be the set of all f ∈ RD which are constant on
blocks of Λ and let ωλi (R) :=

∑
r∈R

ω(r)λi .

Lemma 21.5. If Λ consists of k blocks with sizes λ1,λ2, ...,λk, then

∑
f ∈SΛ

ω(f ) =
k∏
i=1

(∑
r∈R

ω(r)λi
)

=
k∏
i=1

ωλi (R)

21.2 The fundamental theorem

We are ready to state the main result.

Theorem 21.6 (Pólya’s Fundamental Theorem).∑
F orbits of

G action on RD

ω(F) = PG
(
ω(R), ω2(R), . . . , ω|D |(R)

)

Remark. If ω(r) = 1 ∀r ∈ R , then ω(F) = 1 and ωk(R) =
∑
r∈Rω(r)k = |R|. So we get

#orbits = PG(|R|, |R|, . . . , |R|), which we saw previously in Theorem 21.3 making the
Pólya Fundamental Theorem a generalization thereof.

Proof. Consider f ∈ RD and let ω =ω(f ) and

Sω = {f ′ ∈ RD | ω(f ′) = ω}

We observe that

• Sω contains all f ′ in orbit(f ), since if two functions are in the same orbit they
have the same weight

• Sω is a union of orbits

• Sω is invariant under the action of G on RD

We now look at the action of G on Sω. By the Lemma of C-F-B (Lemma 21.1) we get
that

#orbits(G,Sω) =
1
|G|

∑
g

#(f ∈ Sω : f ◦ g = f ).
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21.2 The fundamental theorem

Then ∑
F orbit

ω(F) =
∑
ω

#orbits(G,Sω) ·ω

=
1
|G|

∑
g

#(f ∈ Sω : f ◦ g = f ) ·ω

=
1
|G|

∑
g

∑
f ∈Fix(g)

ω(f )

=
1
|G|

∑
g

m∏
k=1

[ωk(R)]bk = PG(|R|, |R|, . . . , |R|).

For the equation leading to the last line we used that if f is fixed by g, then this implies
that f is constant on every cycle of g, and if further g has type (b1, ...,bm) we get by
Lemma 21.5 ∑

f ∈Fix(g)

ω(f ) =
m∏
k=1

[ωk(R)]bk

.
For the last equation recall the definition of the cycle index polynomial:

PG(x1, ...,xm) =
1
|G|

∑
g∈G

x
b1(g)
1 x

b2(g)
2 ...x

bm(g)
m .

Question: How many edge 3-colourings of the cube with 2 red, 4 green, and 6 blue
edges exist?

Approach: Our set of colours contains R = {r,g,b}. We define a weighting ω : R→ A,
by

ω(r) = X, ω(g) = Y , ω(b) = Z, therefore ω(R) = X +Y +Z

The prior theorem implies that the number is the coefficient of X2Y 4Z6 of

PGedge
(X +Y +Z,X2 +Y 2 + z2, ...,X12 +Y 12 +Z12)

The answer we get, although we don’t compute this by hand, is 600.
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Lecture

22
Design Theory

22.1 Introduction

Design theory talks about set systems. A known set system is for example a graph
G = (V ,E) which is a system of vertices V and edges E ⊆

(V
2
)
. An extension of this

notion and another example for set systems are so called hypergraphs.

Definition 22.1 (Hypergraph). A hypergraph K = (V ,B) is given by a set of vertices V
and a set of hyperedges B ⊆ Pot(V ).

Remark. The set of edges for a graph are just binary relations which are either sym-
metric in the case of non-directed edges or not necessarily symmetric in the case of
directed graphs. For hypergraphs, the edges are replaced by larger subsets of vertices.

Design theory studies very special hypergraphs. In this context it is common to
view hypergraphs as incidence structures (P , I,B) here P is a set of points, B is a set of
blocks and I ⊆ P ×B is the incidence structure which can be described by a matrix.

Definition 22.2 (Flag). Given an incidence structure (P , I,B) a flag is a pair (p,B) with
pIB. If (P ,B) is just a hypergraph a flag is a pair (p,B) with p ∈ B.

Definition 22.3 (Design). A hypergraph (P ,B) is a design with parameters λ,t,k,v if

• |P | = v,

• ∀B ∈ B we have |B| = k,

• ∀T ∈
(P
t

)
there are exactly λ blocks B1, . . . ,Bλ ∈ B with T ⊆ Bi for all i ∈ {1, . . . ,λ}.

Such a pair (P ,B) is a Steiner system with parameter set λ,t,k,v or simply a Sλ(t,k,v).

Remark. Given an incidence structure (P , I,B) we may also suppress the incidence
relation and write (P ,B) if I is clear from context.

Example 41. The complete k-uniform hypergraph L =
(
V ,

(V
k

))
is a Sλ(t,k,v) for every

t ≤ k and λ =
(v−t
k−t

)
. This is one of the so-called trivial designs.

Example 42 (Projective plane). The Fano plane is the projective plane of order 2. It has
7 points (|P | = 7) and 7 lines (|B| = 7) and 3 points on each line (k = 3). Any two distinct
points determine a unique line containing them. The Fano plane is an S1(2,3,7).

In general a finite projective plane of order q forms an S1(2,q+ 1,q2 + q+ 1).
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22.1 Introduction

Example 43 (Projective plane put differently). Let P = F3
2, so |P | = 8. We let the blocks be

defined via B := {{x,y,z,x + y + z} | x,y,z ∈ F3
2 different} giving k = 4. As an observation

we see that every block is uniquely determined by each of its triples since we get the
remaining element via addition as we work over F2. This makes it an S1(3,4,8) which
is an affine geometry.

Fix (0,0,0) ∈ F3
2 and consider

B′ := {B \ (0,0,0) | B ∈ B and (0,0,0) ∈ B}.

We call (P ,B′) the residual design of (P ,B). The blocks are of size three and every pair
of points together with (0,0,0) determines a unique block. So for example if we are
given (1,0,0) and (1,0,1) then we know that these form a block together with (0,0,1).
This shows that (F3

2 \ (0,0,0),B′) form an S1(2,3,7).
This constructions can be generalised to get an S1(3,4,2n) which can be transformed

in the same fashion to a residual design S1(2,3,2n − 1).

Having visited several examples we may pose the main question of Design Theory:

Question: Given (λ,t,k,v) does there exist an Sλ(t,k,v), and if so, how many of them
do exist?

Observation. The existence of a Sλ(t,k,v) given some parameters (λ,t,k,v) can be
reduced to an integer program. Take a matrix

(P
t

)
×
(P
k

)
matrix T which has a 1 if the

t-element subset is contained in the k-element subset and a 0 otherwise. Then we
ask for an integer vector x with entries ≥ 0 such that T x = λ1. The selection vector x
selects a multiset of sets of size k that form the block such that every t-subset of |P | is
covered by exactly λ many blocks.

These matrices can be rather big and solving the IP impossible: this motivates to
looks for systems with large automorphism groups as for these we can rely on the help
of group actions to reduce the size of the matrix and solve the existence question more
efficiently.

Example 44 (Existence of S6(3,5,10)). First we need a ground set with 10 elements. We
take the edges of a K5 giving

(5
2
)

= 10 edges. The group S5 is acting on K5 and its edges.
We define the blocks to be the orbits of

• 5-cycles and

• triangles with two legs, i.e., a 3-cycle with two additional independent edges to
the remaining vertices

under the action of S5.
A block corresponding to the edges of a 5-cycle is fixed by a dihedral subgroup of S5.

The dihedral group D5 has 10 elements, hence there are |S5|/ |D5| = 120/10 = 12 blocks
of the first type.

For the triangle with legs we have
(5
3
)

= 10 options for the triangle. The first of the
remaining vertices can have a leg with each of the three vertices of the triangle, the
second only has two options. Hence, we have

(5
3
)
· 3 · 2 = 60 blocks of this type.
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22. Design Theory

Figure 22.1: A 5-cycle and a triangle with two legs.

We are left to check the properties for t = 3 and λ = 6.
Let us look at 3-element sets of edges—or more rigorous the orbits thereof under

the action of S5 on K5. There are four different types as illustrated in Figure 22.2.

Figure 22.2: The four different types for 3 edges in K5.

Each such type comes with a labeling of the vertices/edges and thus we have to
check to how many blocks/orbits it can be extended. For the first type there is only
one choice to make it a 5-cycle: we have to connect the two vertices of degree one
with the missing vertex to make it an element of an orbit of the 5-cycles. There are 5
different choices however to extend it to a triangle with two legs. Thus all in all it is ”a
subset” of 6 blocks. The following picture shows the extensions.

Figure 22.3: The 6 different orbits of type 1.
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22.2 Arithmetic conditions

For the second type – the triangle – there are 6 way for adding the two legs. The
third one allows three options of adding one edge to make it a triangle with one leg,
in each case there are two options for the second leg, i.e., 3 · 2 = 6 ways of completing
it to a block. Finally type 4 can be completed in 2 ways to a 5-cycle and in 4 ways to a
triangle with legs.

Concluding we have seen that any 3-set of edges in K5 is part of exactly 6 orbits
making our set system an S6(3,5,10).

Example 45 (Existence of an S1(3,4,10)). We again use the edges of K5 as the ground
set. In this case B will be the orbits of K3 ∪K2, S4 (a star with 4 edges) and C4 ∪ {v} a
4-cycle with a singleton

Now for the first one we get |S3 × S2| = 12 elements in the stabilizer group giving an
orbit of size 120/12 = 10. The star has automorphism group S4 giving an orbit of size
120/24 = 5. For the 4-cycle we get the dihedral group on 4 elements giving an orbit
of size 120/8 = 15. Thus in total we have |B| = 30 blocks. In this case the 3-sets of all
types shown in Figure 22.2 allow exactly one completion to a block, this shows that
the system is an S(3,4,10).

22.2 Arithmetic conditions

The first thing we ask here is how many blocks does an Sλ(t,k,v) have?

Observation. The idea is to double count pairs (T ,B) where |T | = t, B ∈ B and T ⊆ B.(
v

t

)
λ =

∑
T

λ =
∑
T

∑
B:T⊆B

1 =
∑
B∈B

∑
T :T⊆B

1 =
∑
B∈B

(
k

t

)
= b

(
k

t

)
,

where b = |B| gives the number of blocks. Thus

b = λ
(v
t

)(k
t

) .
This directly gives a necessary condition for the existence of Steiner systems.

Corollary 22.4. There is no Sλ(t,k,v) for given λ,t,k,v if λ
(v
t

)
/
(k
t

)
< N.

Let J ⊆ P with |J | = j < t and define λ(J) = #(B ∈ B : J ⊂ B). We count pairs (T ,B)
again with |T | = t,B ∈ B and the extra condition J ⊆ T ⊆ B.

λ

(
v − j
t − j

)
=

∑
T :J⊆T

∑
B:T⊆B

1 =
∑
B:J⊆B

∑
T :J⊆T⊆B

1 =
∑
B:J⊆B

(
k − j
t − j

)
= λ(J)

(
k − j
t − j

)
.

This implies that λ(J) is independent of the choice of J as long as j is fixed. We
summarize our observations in the following theorem.
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22. Design Theory

Theorem 22.5 (Arithmetic conditions). An Sλ(t,k,v) can exist only if

λ

(
v − j
t − j

)
≡ 0 mod

(
k − j
t − j

)
,

for all j = 0 . . . , t − 1.

Corollary 22.6. An S1(2, k,v) can only exist if

v(v − 1) ≡ 0 mod k(k − 1)
v − 1 ≡ 0 mod (k − 1).

Example 46. If k = 3 then v − 1 ≡ 0 mod 2 implies that v is odd and from the first
relation we get that v(v − 1) is divisible by 6. Both together imply that v ≡ 1,3 mod 6.

Systems of the form S(2,3,v) are called Steiner triple systems which will be written
as STS(v).

Corollary 22.7. Given v ∈ N, if a Steiner Triple System STS(v) exists, then v ≡ 1,3 mod 6.

It turns out that this condition is also sufficient for the existence. We will dedicate
part of the next lecture to an in depth analysis of STS(v), but for now we will focus on
another result for set systems: Fisher’s inequality.

Theorem 22.8 (Fisher’s inequality). If an Sλ(t,k,v) exists for t ≥ 2, then the number of
blocks exceeds the number of points, i.e. b ≥ v.

Proof. Let A be the incidence matrix with v rows and b columns:

Ap,B =

1, p ∈ B
0, otherwise

.

We look at the v × v matrix given by AAT . Then

(AAT )p,q = #(B : p ∈ B and q ∈ B) =

λ1, if p , q,
λ2, if p = q.

So AAT has λ1 on the diagonal and else it has λ2 as entries. We observe that λ1 > λ2.
Next we will show that AAT is regular, i.e., it has a non-vanishing determinant and

its rank is v. This then implies that rank(A) ≥ v and finally

b ≥ rank(A) ≥ v.
There is several ways to check the regularity of AAT , one being the Gauß elimination

procedure and verify that det(AAT ) = (µ+ vλ2)µv−1 > 0 for µ = λ1 −λ2.
Another way is to write AAT = λ2J + µI, where J is the all-one matrix and I the

identity. The claim now is that AAT is positive definite. To this extent let x , 0 then

xAAT xT = x(λ2J)x
T + x(µI)xT = λ2

∑
i,j

xixj +µ
∑

x2
i = λ2

(∑
xi
)2

+µ
∑

x2
i > 0.

Corollary 22.9. Steiner systems S(2,6,16),S(2,6,21) and S3(2,10,25) do not exist even
though the parameters fulfill the arithmetic condition.
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22.3 Steiner triple systems

22.3 Steiner triple systems

We start this section with an old problem known as Kirkman’s schoolgils problem dating
back to 1850.

Kirkman’s Problem: 15 schoolgirls walk each day in 5 groups of 3. Arrange
the girls walk for a week such that each pair of girls walks together in a
group just once.

Thinking of set systems we have a groundset of size v = 15 and blocks of size
k = 3, and each pair is in exactly one block so we look at S1(2,3,15). By the arithmetic
conditions we get b = λ

(v
t

)
/
(k
t

)
= 35 many blocks. So we get 5 · 7 blocks. Our quest

is then to give an STS(15) with the additional property that B = B1∪̇ . . . ∪̇B7 with Bi
being an S(1,3,15): every girl belongs to exactly one block.

This condition is often summarised by saying that we want the design to be resolv-
able.

Example 47 (Resolvable STS(9)). We need b = 9·8
3·2 = 12 blocks. Arrange the 9 points

on a (3× 3)-grid. Then the rows and the columns form 6 blocks. The remaining six
blocks are the diagonals in a ”Sarrus style” as given by Figure 22.4. Then every pair of

Figure 22.4: The four different partitions of blocks.

vertices is part of exactly one block and we can regroup the blocks into four partitions
of the groundset.
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Lecture

23
Steiner Triple Systems and Kirkman’s
problem

Last lecture we introduced designs and Steiner Triple Systems (STS) – S1(2,3,v) designs
– as a special case thereof. We finished the lecture by mentioning Kirkman’s problem
which we will discuss more thoroughly today. For readability we restate the problem.

Kirkman’s Problem: 15 schoolgirls walk each day in 5 groups of 3. Arrange
the girls walk for a week such that each pair of girls walks together in a
group just once.

We have already seen that Kirkman asks for a S(2,3,15) (Steiner triple system on
15 points) which is resolvable, i.e., the set of blocks admits a partition B = B1∪̇ . . . ∪̇B7
such that each Bi forms a S(1,3,15): every girl belongs to exactly one block.

Solution to Kirkman’s problem. We already know that there is an S(3,4,2n) with
points in Fn2 and blocks {x,y,z,x + y + z} as well as residual designs S(2,3,2n − 1). In
particular we have an S(3,4,16).

Fix 0 ∈ F4
2 and consider the residual design from last lecture: only look at blocks

containing 0 and remove it from the blocks, that is we get an S(2,3,15) = STS(15). So
our points are in F4

2 and the blocks are of type {x,y,x+y}. We are left to prove that this
design is resolvable. To this extent we restrict our attention to the 7 points p0, . . . ,p6
with 4th coordinate 0

p0 p1 p2 p3 p4 p5 p6
1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1
0 0 0 0 0 0 0

If B is a block containing two of these points (pi ,pj), then the third point pi + pj also
has 4th coordinate 0. Hence the 7 points form a S(2,3,7) (this is the projective plane of
order 2, compare the example from the previous lecture). The blocks of S(2,3,7) are
Bi := {pi ,pi+1,pi+3} with i = 0, . . . ,6 (addition of indices is taken modulo 7).

Remark. The construction of the S(2,3,7) above shows that the system is cyclic, this
means that there is an action of the cyclic group on the points such that the blocks are
a collection of orbits of the induced group action on k-sets.
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23.1 Existence of Steiner Triple Systems

Back to the STS(15); the remaining eight points of the groundset can be labeled
as qi := pi + 1 together with the all-one vector 1. We define four additional groups
of 7 blocks: Bi1 := {pi ,qi+1,qi+3}, and Bi2 := {qi ,pi+1,qi+3}, and Bi3 := {qi ,qi+1,pi+3}, and
B̄i = {pi ,qi ,1}. All these blocks belong to the STS(15) because they are of the type
{x,y,x+ y}. In total this yields 5 · 7 = 35 blocks, i.e., all the blocks of the STS(15).

For i = 0, . . . ,6 let

Bi := {Bi ,Bi+4
1,Bi+1

2,Bi+2
3, B̄i+6}.

We easily verify that B0 is an S(1,3,15) by checking that every point is covered
exactly once. And finally conclude that this is a solution to Kirkman’s problem.

23.1 Existence of Steiner Triple Systems

Using the insights gained from last lecture on arithmetic conditions we already know
that n ≡ 1,3 mod 6 is necessary for the existence of an STS(n). It has been shown that
this necessary condition is also sufficient. We only show the easy ‘half’ of this.

Theorem 23.1. If n ≡ 3 mod 6 then there is a STS(n).

Proof. We can write n = 6s+ 3 = 3(2s+ 1) for some s. Let m := 2s+ 1 and P = {ai ,bi , ci |
i ∈ Zm}. Next we define the blocks B coming in four flavours namely

(i) set of all (ai ,bi , ci),

(ii) set of all (ai , aj ,bk), where i + j = 2k in Zm,

(iii) set of all (bi ,bj , ck), where i + j = 2k in Zm,

(iv) set of all (ci , cj , ak), where i + j = 2k in Zm.

It is easily seen that every pair of elements is covered by some unique type of blocks.
For example (a3,b3) is covered by a type (i) block while (a2,b7) must be covered by a
type (ii) block and (b3,b6) must be covered by a type (iii) block. We claim, that every
pair of {i, j,k} uniquely determines the third element, this then implies that every pair
of points is covered by exactly one block. Now given {i,k} or {j,k} we get a unique
j or i respectively by looking at 2k − i or 2k − j. The interesting case is when we are
given {i, j} then we know 2k but we have to show that we can extract k uniquely (the
preimage under 2x is unique) which holds true if 2 is a unit in Zm so that we can take
its inverse.

Claim: the map x 7→ 2x in Zm is a bijection. Let x,y ∈ Zm, let 2x = 2y modm and
suppose x > y, then 2x = 2y +m in Z which is impossible since 2x is even but 2y +m is
odd. This concludes the proof.
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23. Steiner Triple Systems and Kirkman’s problem

23.2 An algebraic construction of designs

Let q be a primepower and consider X := Fq∪{∞}, this will be our ground set. This set
can be thought of as a finite projective line. Then

PGL(2,q) = {x 7→ ax+ b
cx+ d

| a,b,c,d ∈ Fq, ad − bc , 0}

is a group acting on X (it is known as a group of Möbius transformations). To deal
with∞ which is not an element of the field Fq We set some rules:

• a , 0 =⇒ a ·∞+ b =∞,

• 0 ·∞ = 0 and 0
0 = 1,

• a∞
c∞ = a

c ,

• a
0 =∞ and a

∞ = 0.

Remark. Recall that GL(2,q) =
{[
a b
c d

]
| a,b,c,d ∈ Fq, ad − bc , 0

}
is acting on F2

q via[
x1
x2

]
7→

[
a b
c d

][
x1
x2

]
=

[
ax1 + bx2
cx1 + dx2

]
.

If we look at 1-dimensional subspaces of F2
q as points, we can switch to homogeneous

coordinates: that is for a subspace

Ux,y :=
{
λ

[
x
y

]
| λ ∈ R

}
with given x,y ∈ Fq we can choose the representant for the vectorspace to have a 1

as second entry, i.e. {λ
[
x
y

]
| λ ∈ R} = {λ

[
xy−1

1

]
| λ ∈ R} as longs as y , 0. Thus every

subspace except for the one spanned by
[
1
0

]
can be uniquely identified with a single

point xy−1 in F2
q. This is the reason why we identify

[
1
0

]
with∞, going hand in hand

with our new rules: 1
0 =∞.

Proposition 23.2. The cardinality of PGL(2,q) is q3 − q = (q+ 1)q(q − 1).

Proof. First note that

|GL(2,q)| = #(pairs of lin. ind. vectors in F2
q) = (q2 − 1)(q2 − q).

We also note that all matrices of the form
[
a 0
0 a

]
map to the identity in PGL and there

are (q−1) such maps. In general two matrices that differ by some multiplicative factor
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23.2 An algebraic construction of designs

are mapped to the same map in PGL(2,q). This observation is easily extended to prove
that the (quotient)map GL(2,q)→ PGL(2,q) has Kernel of size (q − 1), which proves

|PGL(2,q)| = |GL(2,q)|
q − 1

= (q+ 1)(q2 − q).

Next we look at a special property of the projective general linear group.

Proposition 23.3. The group PGL(2,q) acts sharply transitive on ordered triples of distinct
elements of X := Fq ∪ {∞}.

Acting sharply transitive on ordered triples means that for any two triples (a,b,c), (a′,b′, c′)
of distinct elements (a , b , c and a′ , b′ , c′)there is exactly one A ∈ PGL(2,q) map-
ping (a,b,c) to (a′,b′, c′). The term sharply imposes the uniqueness on A.

Proof. Let G := PGL(2,q), then the stabilizer G∞ := {g ∈ G | g(∞) = ∞} of ∞ in G is
given by

G∞ = {x 7→ ax+ b,a , 0},

which is an easy conclusion after thorough examination of our new rules for∞. In G∞
only the identity x 7→ x maps 0 7→ 0, 1 7→ 1 and∞ 7→∞. So the stabilizer of (∞,0,1)
under the action of G on ordered triples is the identity. Moreover,

|orbit(T )| · |Stab(T )| = |G| = (q+ 1)q(q − 1),

for ordered triples T . Since for (∞,0,1) the stabilizer contains only the identity thus
|Stab((∞,0,1))| = 1 we deduce that orbit((∞,0,1)) consists of all ordered triples of
distinct elements.

We conclude this section with a rather technical theorem.

Theorem 23.4. Let q be a prime power, then this implies that S(3,q+ 1,qn + 1) exists.

Proof. There exists a field Fq of order q and an extension field Fqn whose elements
are the polynomials of degree < n with coefficients in Fq. Then Fq ⊆ Fqn is a subfield
consisting of the constant polynomials.

This implies that PGL(2,q) < PGL(2,qn) := Γ is a subgroup. Let X := Fqn ∪ {∞} and
define B := Fq ∪ {∞}, this is the initial block, its size is q + 1. We know that Γ acts
transitively on ordered triples of distinct elements which implies that orbitΓ (B) is a
3-design for some λ this is because the number of appearances of an ordered triple in
the orbit is independent of the triple: Every triple can be found in an element of the
orbit, since 0,1,∞ belong to B and Γ is 3-transitive. Consider all the blocks containing
(0,1,∞) and a unique g ∈ Γ which maps (0,1,∞) to (a,b,c). Now g maps each block
containing (0,1,∞) to a block containing (a,b,c).

It remains to verify that λ = 1.
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23. Steiner Triple Systems and Kirkman’s problem

From the choice of B it follows that StabΓ (B) contains PGL(2,q). Hence,

|orbitΓ (B)| = |Γ |
|StabΓ (B)|

≤
(qn + 1)qn(qn − 1)

(q+ 1)q(q − 1)
.

Since we know that the elements of the orbit form the blocks of the design we can use
our arithmetic conditions for the number of blocks b = |orbitΓ (B)|. That is

|orbitΓ (B)| = b = λ

(qn+1
3

)(q+1
3
) = λ

(qn + 1)qn(qn − 1)
(q+ 1)q(q − 1)

,

which with our previous inequality yields λ = 1.

After all these technicalities let’s get back to the fundamental question about the
existence of Steiner systems. In the case of Steiner Triple Systems the arithmetic
conditions are precisely the conditions that characterise the existence. In 2014 Keevash
has proven the following very general existence result.

Theorem 23.5. For given λ,t,k there exists some v0(λ,t,k) such that for every v ≥ v0 if
λ,t,k,v satisfy the arithmetic conditions, then there exists an Sλ(t,k,v).

Remark. This implies that for each fixed λ,t,k there are only finitely many v for which
one needs to check existence since existence is guaranteed as long as v is ”big enough”.
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Möbius Inversion

24.1 The incidence algebra of a poset

Let P = (X,≤) be a poset and F be a field. The set of all functions F : X ×X→ F with
the property that F(x,y) = 0 for all x,y with x � y is called the incidence algebra of
poset P . The incidence algebra is equipped with two operations:

(F +G)(x,y) = F(x,y) +G(x,y) (pointwise addition)

(F ·G)(x,z) =
∑

y:x≤y≤z
F(x,y)G(y,z) (convolution)

Proposition 24.1. The incidence algebra together with pointwise addition and convolution
is a ring with 0 and 1.

Proof. The zero with respect to addition is the constant 0 map. The neutral element
with respect to convolution maps all pairs (x,x) to 1 and all the other pairs to 0.

Let L be a linear extension of P , i.e., L = (x1, . . . ,xn) is a permutation of the set X
such that xi < xj =⇒ i < j). Having fixed L we can write an element F of the incidence

algebra as an upper triangular matrix MF =
(
F(xi ,xj)

)
i,j∈[n]

, see Figure 24.1. Note that

4

5
3

1
2

1

2

3

4

5

1 2 3 4 5

? 0 ? 0 ?

? ? ? ?

? 0 0

? ?

?
0

Figure 24.1: A poset with implied linear extension on the left hand side and the corresponding
matrix on the right hand side

convolution corresponds to matrix multiplication and the one of the incidence algebra
to the identity matrix. We claim that F has an inverse if and only if F(x,x) , 0 for all
x ∈ X: This is easy to see by a determinant argument. We can, however, calculate the
inverse explicitly. We need G ·F = id for some G and therefore

F(x,x)G(x,x) = 1 ⇐⇒ G(x,x) =
1

F(x,x)
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24. Möbius Inversion

For x , z we further need

0 = (G ·F)(x,z) =
∑

y:x≤y≤z
G(x,y)F(y,z)

If we solve these by increasing differences in the indices of the linear extension, we
know all summands on the right hand side but y = z and therefore get

G(x,z) =
−1

F(z,z)

∑
y:x≤y<z

G(x,y)F(y,z)

24.2 Zeta function and properties of P

Definition 24.2. The zeta function of a poset P is given by

z(x,y) =

1 x ≤ y,
0 otherwise.

We immediately get

z2(x,z) =
∑

y:x≤y≤z
z(x,y)z(y,z) =

∑
y:x≤y≤z

1 = size of the interval [x,z] in P

= #(3-element multichains from x to z in P )

and

zk(x,z) =
∑

x=y0≤y1...≤yk=z

1 = #(k + 1-element multichains from x to z in P )

We further have

(z − 1)(x,y) =

1 x < y,

0 otherwise.

(z − 1)k(x,y) = #(k-chains from x to y in P )

and

#(chains) =

∑
k≥0

(z − 1)k
 =

1
1− (z − 1)

= (2− z)−1
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24.3 Möbius inversion

24.3 Möbius inversion

Definition 24.3. Let Z be the matrix corresponding to the zeta function of P . Let
M =

(
µ(x,y)

)
be the inverse of Z. The function µ is called the Möbius function of P .

We observe that ∑
y:x≤y≤z

µ(x,y)Z(y,z) = δx=z

Hence:

(M1) µ(x,x) = 1 for all x ∈ X

(M2) µ(x,z) = −
∑
y:x≤y<zµ(x,y) if x < z

(M3) µ(x,z) = 0 if x � z

Theorem 24.4 (Möbius Inversion). For any two functions f=, f≤ : X→ F

f≤(y) =
∑
x≤y

f=(x) ⇐⇒ f=(y) =
∑
x≤y

f≤(x)µ(x,y)

Proof. Consider f=, f≤ as row vectors:

f≤ = f= ·Z
ZM=1
⇐⇒ f≤ ·M = f=

24.4 Computing Möbius functions

24.4.1 Chains

1

2

3

4

5

6

We get

• µ(a,a) = 1, this follows from (M1).

• µ(a,a+ 1) = −1, this follows from (M2) and µ(a,a) = 1.

• µ(a,a+ 2) = 0, this follows from (M2) and the previous items.

• µ(a,a+ k) = 0 for all k ≥ 2

By taking N as chain and f ,g : N → F we therefore get the following
corollary of Möbius Inversion:

g(n) =
n∑
i=1

f (i) ⇐⇒ f (n) = g(n)− g(n− 1)
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24. Möbius Inversion

24.4.2 Products

Let P = (XP ,≤P ) and Q = (XQ,≤Q) be posets. We define

P ×QB
(
XP ×XQ, (x1,x2) ≤P×Q (y1, y2) ⇐⇒ x1 ≤P y1,x2 ≤Q y2

)
Example 48. Here are some examples of products of posets

• Here is a product of two chains of length 4 and 2 respectively:

1

2

3

4

×
1

2
=

(1,1)

(1,2) (2,1)

(3,1)(2,2)

(4,1)(3,2)

(4,2)

• Here is a product of two more complex posets:

1

2

3

×
1

2

3

=

(1,1)

(2,1)

(3,1) (1,3)

(2,3)

(3,3)

(1,2)

(2,2)

(3,2)

• Here is the construction of the boolean lattice as product of 2-chains:

1

2

×
1

2

× · · · ×
1

2

︸ ︷︷ ︸
n factors

= Bn

Proposition 24.5. The Möbius function of P ×Q is given by

µP×Q
(
(x1,x2), (y1, y2)

)
= µP (x1, y1)µQ(x2, y2)
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24.5 Möbius inversion on the Boolean lattice

Proof. (M1) X. (M3) X. For (M2) we need a little calculation. Let (x1,x2) < (z1, z2)∑
(x1,x2)≤(y1,y2)≤(z1,z2)

µ
(
(x1,x2), (y1, y2)

)
=

∑
x1≤y1≤z1
x2≤y2≤z2

µP (x1, y1)µQ(x2, y2) =

 ∑
x1≤y1≤z1

µP (x1, y1)


 ∑
x2≤y2≤z2

µQ(x2, y2)

 = 0, since x1 < z1 or x2 < z2.

24.4.3 Boolean lattices

For a 2-element chain we have µ(0,0) = µ(1,1) = 1 and µ(0,1) = −1 and µ(1,0) = 0.
In the following we think of elements A,B of Bn as sets or characteristic vectors
interchangeably. Using that Bn is a power of 2-chains we obtain:

µ(A,B) =
∏
i

µ(Ai ,Bi) =


∏

(−1)|Bi−Ai | = (−1)|B−A| A ⊆ B
0 otherwise

24.5 Möbius inversion on the Boolean lattice

For the Boolean lattice we get

N≥(A) =
∑
B⊇A

N (B) ⇐⇒ N (A) =
∑
B⊇A

(−1)|B−A|N≥(B)

Remark. In particular this yields

N (∅) =
∑
B

(−1)|B|N≥(B)

which implies the inclusion-exclusion-formula.

To exemplify the connection we again derive a formula for the number of derange-
ments on [n].

Example 49. We first define fix(π) = {i : π(i) = i}. We further define

N (A) = #(π : fix(π) = A) and N≥(A) = #(π : fix(π) ⊇ A).

It is easy to see that N≥(A) = (n− |A|)!. It follows that

#(derangements) =N (∅) =
∑
B

(−1)|B|(n− |B|)! =
∑
k

(
n

k

)
(−1)k(n− k)! = n!

n∑
k=0

(−1)k

k!
.

167



24. Möbius Inversion

24.6 An algorithmic application of Möbius inversion

In this section we aim for an exact exponential algorithm for the k-cover problem. As
input we get a family F of subsets of N with |N | = n and want to know how many
k-covers exist, that is how many k-subsets {F1, . . . ,Fk} of F with N =

⋃
Fi exist.

Remark. This counting problem is #P -complete and the corresponding existence
problem is NP-complete.

A trivial algorithm consists of checking each k-subset of F . Each such check can be
done in O(n · k). Overall the complexity of this algorithm is n · k ·

(|F |
k

)
∼ n|F |k but the

size of the family F can be large, in fact as large as 2n. In such a case the complexity
of the algorithm is in O∗

(
(2n)k

)
. If k is large as well this yields O∗

(
2n

2)
.

In this lecture we will see that counting k-covers can be done in O∗(2n) by fast
zeta transform, a technique relying on the Möbius function, where O∗(f (n)) denotes a
function of the form p(n)f (n) for some polynomial p.

Let N be some groundset with |N | = n and let F ⊂ 2N be a family of subsets of N . A
k-cover is a subset {F1, . . . ,Fk} ⊂ F with N =

⋃k
i=1Fi .

Let X ⊆N , then we denote by

N≥(X) := #
(
(F1, . . . ,Fk) such that

⋃
Fi ∩X = ∅

)
.

Further let
A(X) := #(F ∈ F with F ∩X = ∅).

We observe that N≥(X) = Ak(X), since the former is just a k-fold choice of F ∈ F having
no intersection with X.

The key claim is then as follows.

Lemma 24.6. The value of A(X) can be computed for all X ⊆N in overall O∗(2n) time.

We begin by describing how to use Lemma 24.6. Define

N=(X) := #(k − tuples (F1, . . . ,Fk) such that
⋃

Fi = X).

From the definitions we get

N≥(X) =
∑
Y :X⊆Y

N=(Y ) and N=(∅) = #(k − tuples which are k − covers).

As our notation already suggests we will use Möbius inversion to derive an expression
of N=(∅) in terms of N≥(X). Using our knowledge about the Möbius function of the
Boolean lattice and in particular µ(∅,X) = (−1)|X | we get:

N=(∅) =
∑
X⊆N

(−1)|X |N≥(X) =
∑
X⊆N

(−1)|X |A(X)k . (24.27)
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24.6 An algorithmic application of Möbius inversion

This means in order to compute N=(∅) it suffices to compute the values of A(X) for
all X. Assuming Lemma 24.6 this can be done in O∗(2n). The evaluation of each
summand on the right side of Equation 24.27 can be done in time polynomial in n
whence the evaluation of the sum is in O∗(2n). So we are left with proving Lemma 24.6.

Proposition 24.7. Let f : 2[n]→ {0,1} be the characteristic function of F . Then f can be
computed in O∗(2n) even if F is implicitly given with a polynomial test.

Remark. An example for such an implicitly given family would be: given a graph
G = (V ,E) we define F to be the family of independent sets. Then for each subset of
vertices one can test in polynomial time whether this set vertices is an independent
set, i.e. part of the family F .

Proof. Just check for each of the 2n subsets of N whether they belong to F . By
assumption the test only takes polynomial time so that the whole computation can be
done in O∗(2n).

Having computed f we get
A(X) =

∑
Y⊆X

f (Y ).

For a givenX this can be computed inO∗(2n) since |2X | ≤ 2n. So we can naively compute
A(X) for all X which would need 2nO∗(2n) computations which is unfortunately too
much. We show next how to use the fast zeta transform to reduce the complexity of
these computations to O∗(2n).

Fast Zeta Transform:
Suppose that f : N → F is given. We want to compute the function g(X) =∑
Y :X⊆Y f (Y ) for every X ⊆N ”efficiently”.
Note that g(X) needs 2n−|X | values of f whence in total∑

X

2n−|X | =
∑
X

2|X | =
∑(

n

k

)
2k = (1 + 2)n = 3n.

This is already a slight computational improvement, but the basis for the exponential
should be 2 and not 3.

Define g0(X) = f (X) and inductively set

gi(X) :=

gi−1(X) + gi−1(X ∪ {i}) i < X,

gi−1(X) otherwise.

Proposition 24.8. For every X ⊆N it holds true that

gi(X) =
∑

Y :X⊆Y⊆X∪{1,...,i}
f (Y ).
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24. Möbius Inversion

Proof. By induction on i. This is clear for g0 = f . So assume it is true for i − 1. We
distinguish two cases for X:
(i < X) The idea is to split the sum defining gi in two parts. The first has those Y with
i < Y and the second has the Y with i ∈ Y :

gi(X) =
∑

Y :X⊆Y⊆X∪{1,...,i}
f (Y ) =

∑
X⊆Y⊆X∪{1,...,i−1}

f (Y ) +
∑

X+i⊆Y⊆(X+i)∪{1,...,i−1}
f (Y )

= gi−1(X) + gi−1(X + i),

(i ∈ X) It is clear that in this case X ⊆ Y implies i ∈ Y and thus the Y ⊆ N satisfying
X ⊆ Y ⊆ X ∪ {1, . . . , i − 1} are the same as those satisfying X ⊆ Y ⊆ X ∪ {1, . . . , i}, i.e.,
gi(X) = gi−1(X).

Clearly gn(X) = g(X). The proposition shows that when gi−1 is known we can
compute gi with a constant number of operations for each X, hence, overall in O(2n)
complexity. Now gn = g can be computed in n rounds where each round is in O(2n),
hence, gn is computed in O∗(2n).

To actually prove Lemma 24.6 it remains to show that A(.) can be computed using
the fast zeta transform. We leave the details as an exercise.
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25.1 Catalan families and bijections

We have already seen Catalan numbers in Lectures 8 and 9. There we used the inter-
pretation of the Catalan number Cn as the number of rooted binary trees on n nodes.
In the exercises we have seen that they also count the number of triangulations of a
convex (n+ 2)-gon. The first six Catalan numbers are

C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42, C6 = 132.

Using generating functions we found a closed formula for Cn:

Cn =
1

n+ 1

(
2n
n

)
.

In this chapter we will look at several combinatorial families that are counted
by Catalan numbers, we call them Catalan families. To show that two families are
equinumerous we will give bijections between the families. In the case of Catalan
families we can use triangulations of an (n + 2)-gon as the initial family since we
already know that they are counted by Catalan numbers.

Remark. There is a book by Richard Stanley from 2015 called Catalan numbers contain-
ing 214 different combinatorical interpretations of Catalan numbers all enumerated
via letter combinations. We will start by looking at the families a,c,d,e, i.

The family (a) is given by the triangulations of (n+ 2)-gons.

Definition 25.1 (Catalan families a,c,d,e, i). The families are given as follows

(a) triangulations of (n+ 2)-gons.

(c) rooted binary trees on n vertices.

(d) rooted full binary trees with (n+ 1) leaves.

(e) rooted plane trees on n+ 1 vertices.

(i) Dyck paths of length n, i.e., paths from (0,0) to (2n,0) using diagonal up or down
steps which never go below the x-axis.
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25. Catalan Families

Proposition 25.2 (Bijections between the families). There are bijections between the
families a,c,d,e, i.

Proof. Here we give bijections for c↔ d, a↔ d, e↔ i and d↔ e.

[c ↔ d] A rooted full binary tree T with n + 1 leaves has n non-leaf nodes, i.e. the
inner nodes. Map T to the tree T ′ of non-leaf nodes. Now let T ′ be a rooted binary
tree with n nodes. Each node could accommodate a left and a right descendant. Only
n− 1 out of these 2n positions are occupied by the non-root nodes of T ′. Map T ′ to
the tree T where a leaf is added at each free descendant position of the original nodes.
This yields a one-to-one correspondence between rooted binary trees on n nodes and
rooted full binary trees with n+ 1 leaves.

[a↔ d] Let D be an (n+ 2)-gon with a marked edge e. Given a triangulation ∆ of D we
consider the interior dual graph ∆∗ of ∆, then we delete the vertex of degree n+ 2 from
the dual. For each edge of D except e we add a a leaf to the dual vertex of the incident
triangle. This vields the green tree shown on the left of Figure 25.1. The root of the
tree is the unique vertex of degree 2, this is the dual of the triangle incident to e.

Figure 25.1: The left hand side shows ∆ and the corresponding full binary dual tree. The right
hand side shows how to obtain a traingulation from a full binary tree.

Conversely given a full binary rooted tree on n+ 1 leaves we get a unique triangula-
tion of an n+ 2-gon with a designated edge e, as illustrated in Figure 25.1, by again
taking the dual of the graph obtained by merging all leaves into a single vertex that is
also made adjacent to the root.

[e↔ i] Given a Dyck path think of adding glue on the bottom side of each step. Then
push from left and right such that each edge is glued to its partner edge. This yields a
tree as shown in Figure 25.2. A more formal description would make each maximal
horizontal segment at an integer coordinate below the path a node and define partners
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as the pairing of a step (a,k), (a+ 1, k + 1) and step (b,k + 1), (b + 1, k) such that between
a+ 1 and b the y-coordinate of the Dyck path is larger than k.

Figure 25.2: On the left we have a Dyck path of length 8 where the glue is marked as red on
the lower side of the edges. The numbers next to the edges help to visualise which edges
have been glued together to form the tree depicted on the right.

Conversely given a plane tree we get a Dyck path by walking around the tree starting
from the root and take a step of slope +1 when going visiting a tree edge for the first
time and a step of -1 at the second visit of an edge. See Figure 25.3

Figure 25.3: On the left we have a plane tree on 11 vertices where we mark the ”up-step” with
a (+) and the ”down-steps” with a (−). We can use these steps to produce the Dyck path on
the right.

[d↔ e] Given a rooted plane tree T on n+ 1 vertices we will draw it as an alternating
tree, that is we draw all of its vertices on the x-axis and count them through by 0, . . . ,n
from left to right. We start at the root and look at its subtrees, if the first subtree has
size k we draw an edge from vertex 0 (the root) to k, and then if the second subtree
has size j we draw an edge from 0 to k + j so we count j vertices starting from k. If
we are done we continue to look at the subtrees say the subtree of size k. If its first
subtree of size m and there is a second subtree, then we draw an edge from k to 1, i.e.,
the root of the first subtree , and a second edge to 0 +m for the second subtree. If the
second subtree has ` nodes, then either k = m+ ` + 1 or there is a third subtree and
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we add an edge to 0 +m+ `. The full drawing is obtained by iterating this, such that
the edge to the root of a subtree always spans the interval where the vertices of the
subtree will be placed.

An example is given by the following figure.

Figure 25.4: On the left we have a plane tree where by taking care of the subtree structures we
get the righthand embedding of the tree (known as an alternating tree).

During this construction we can trace whether a vertex has been connected via an
edge going to the right or going to the left. Color the root blue, and then inductively
color vertices red if they have been connected using a right edge and blue if they have
been connected using an edge to the left, as for our previous example these colors have
been added in Figure 25.5.

To obtain a full binary tree on (n+ 1) leaves, draw all the colored vertices on the
x-axis in the same order as for the alternating tree, they will be the leaves. For each
edge draw a a wedge consisting of an increasing segment of slope +1 and a decreasing
segment of slope -1 connecting the two nodes, i.e, if the nodes are at nl = (a,0) and
nr = (b,0) with a < b, then the wedge consists of the segment nl , t and the segment t,nr ,
where t = (a+b2 , b−a2 ). Superinposing all these wedges yields a tree, the inner nodes of
the tree are the tips of the wedges. This construction is illustrated in Figure 25.5

Figure 25.5: On the left we have an alternating tree with correspondingly colored vertices. On
the right we get the corresponding full binary tree with (n+ 1)-leaves.

The converse is given by converting inner nodes into edges connecting the leftmost
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and the rightmost descendent leaf. This makes an alternating tree and hence a plane
tree.

Next we look at five more families.

Definition 25.3 (Catalan families aaa,ddd, ii,pp,`). The families are given as follows

(aaa) linear extensions of the 2×n poset

(ddd) semi-orders with n elements.

(ii) permutations π ∈ Sn that can be sorted on a stack.

(pp) non-crossing partitions of [n].

(`) pairs of internally disjoint lattice paths of length n+ 1 starting in (0,0), taking
only steps upwards and to the right and ending at the same point.

We first have to define some of these objects.

The poset a×b is the product of a chain with a elements and a chain with b elements,
it has a · b elements and a grid like diagram.

A semi-order is a partial order on intervals of length one where for interval I1 =
[a,a+ 1] and I2 = [b,b+ 1] we have I1 < I2 if and only if a+ 1 < b.

Sorting a permutation on a stack means given a permutation π = (π1, . . . ,πn) we can
only use the stack operations push and pop in order to output (pop) the elements
in sorted order. It is known that a permutation is stack-sortable if and only if it is
231-free. This means that there is no triple i < j < k of indices with πk < πi < πj . For
example π = (1,7,8,4,9,10,2,6,3,5) is not 231-free since it contains the subsequence
8,10,3. Note that the permutation (2,3,1) is not sortable on a stack. The elements 2
and 3 have to be pushed to allow the 1 pass them towards the output. Then, however,
2 is blocked by 3.

A partition P = {X1, . . . ,Xj} of [n] is visually represented by the elements 1, . . . ,n
as points on the x-axis and for each block Xi of the partition a path connecting the
elements in increasing order where the edges are circular arcs in the upper halfplane.
The partition is non-crossing if the resulting family of paths does not cross. An
example of the non-crossing partition P = {{1,5,7}, {2}, {3,4}, {6}, {8}} of [8] with the
corresponding family of paths is shown in Figure 25.6.

We briefly sketch bijections to the family of Dyck paths:

[(aaa) ↔ (i):] We get the bijection by looking at the two canonical n-chains of the
ladder poset 2×n. We mark the chain containing the minimal element as red and the
other as blue and say that red corresponds to a (+) and blue corresponds to a (−). Then
given a linear extension, that is an ordering of the vertices, we interpet it as a sequence
of (+) and (−) signs which give us exactly a Dyck path as their sum is 0 and at every
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Figure 25.6: An example of a noncrossing partition of [8]

Figure 25.7: On the left we have a linear extension of the 2× 5 Poset, where we marked the
respective chains in red and blue. On the right we get the Dyck path corresponding to the
linear extension.

step the sum of the signs remains positive. The converse is analogous via interpreting
ups and downs as numberings in the respective chains.
[(ddd)↔ (i) :] Mark the left ends of the intervals red and the right ends blue. Drawing
the intervals on a line using the order of the endpoints we simply sweep from left to
right and seeing a red point we go up in the Dyck path and if we see a blue one we
go down. This can also be reversed to get a semi-order from a Dyck path, where the
unit length of the intervals is crucial in order to know which down step closes which
interval.

We will continue our analysis of Catalan families and their bijective relations in the
next lecture.
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Figure 25.8: On the left we have a semi-order and on the right the corresponding Dyck path.
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26
More Catalan Families

We start the lecture by showing showing two bijections between the family of non-
crossing partitions (pp) and the family of Dyck-paths (i):

1. In the first bijection we draw an interval for each i, the interval starts at i and
ends at the last element of the block Xj containing i, see Figure 26.1. When
sweeping the family of intervals from left to right we insert a step up for each
interval start and a step down for each interval end. This yields a Dyck path.
The non-crossing property is crucial in order revert the mapping, i.e., to know
which down step closes which interval.

7→

Figure 26.1: First bijection between non-crossing partitions and Dyck paths.

2. In the second bijection associate each i with two steps: a singleton with a step
up and then a step down, an internal element with a step down and a step up,
the first element of a part with two steps up and the last element with two steps
down. In Figure 26.2 one can see the corresponding Dyck path to the partition
in Figure 26.1.

Figure 26.2: second bijection between non-crossing partitions and Dyck paths

26.1 Derivations of the Catalan formula

In Lecture 9 we already learned about a explicit formula for Catalan numbers. In this
section we will show that the explicit formula for Catalan numbers can be obtained in
several ways.
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26.1.1 Cycle Lemma

We look at strings consisting of n+ 1 times +1 and n times −1. The number of such
strings is

(2n+1
n+1

)
. We then let the cyclic group act on these strings which yields orbits.

The orbits are equivalence classes.

Lemma 26.1. Every orbit has length 2n+ 1.

Corollary 26.2. This implies

#(classes) =
1

2n+ 1

(
2n+ 1
n+ 1

)
=

1
n+ 1

(
2n
n

)
.

0

1

S1 S2

last min

-1

0

S1 S2

Figure 26.3: Top: some element of an orbit. Bottom: the Dyck path in the orbit.

Proof of Lemma 26.1. Suppose the class of a string S has size < 2n + 1. This means
there is some k < 2n+ 1 such that after k rotations string S is mapped to S, we will
write this as Sk = S. The main idea is that in this case we can break S into t equal
pieces which will give a contradiction on the numbers of ±1 in S. We know that
S = Sk = S1S2 = S2S1 with |S1| = k where S1 is the substring consisting of the first k
elements in S. Further we get S = Sak for all k ∈ Z by repeatedly rotating k times in
either direction. Let further ` = gcd(k,2n+ 1). Then it is known that ` = ak + b(2n+ 1)
for some a,b ∈ Z and hence S` = Sak+b(2n+1) = Sak = S.
With that knowledge we can write S = S ′S ′ . . .S ′︸    ︷︷    ︸

t copies of S ′

with S ′ some substring satisfying

|S ′ | = ` and t = 2n+1
l . Then

1 =
∑

S = t
∑

S ′ , 1,

concluding the proof.

We further claim that each class has a unique string (+1,D) such that D is equivalent
to a Dyck path.
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Proof. Existence: by making the last minimum the first element we get such a string
as seen in Figure 26.3.
Uniqueness: Suppose there are S = S1,S2, S ′ = S2S1. Then

∑
S1 ≥ 1,

∑
S2 ≥ 1, but

1 =
∑
S =

∑
S1 +

∑
S2 ≥ 2.

26.1.2 Reflection Principle

Next we will look at
(2n
n

)
grid path from (0,0) to (n,n) taking steps (1,0) and (0,1). The

paths that stay above the main diagonal correspond to tilted Dyck path and therefore
to a Catalan family. We now want to count the bad paths, that is, paths which go below
the diagonal. Going below the diagonal is equivalent to touching the subdiagonal, i.e.,
the line y = x−1. They are in bijection with grid paths (0,0) to (n+1,n−1) by reflection
of the suffix at the first touching point with the subdiagonal as seen in Figure 26.4.

(0, 0)

(n, n)

(n+ 1, n− 1)

subdiagonal

Figure 26.4: An example for n = 8 where the subdiagonal is marked in blue, the original path
is marked in red and the reflected suffix is marked in orange

This yields

Cn =
(
2n
n

)
−
(

2n
n− 1

)
=

(
1− n

n+ 1

)(2n
n

)
=

1
n+ 1

(
2n
n

)
.
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26.1.3 Symmetric chain decompositions

Let A ⊆ [2n]. As in Section 14.1.1 we associate a sequence of ’(’s and ’)’s with A and
call the chain CA. We further interpret that sequence as possible Dyck path by taking
a step up for an opening parenthesis and a step down for a closing parenthesis. This
is a Dyck path if and only if CA is a singleton. The number of singleton chains in a
symmetric chain decomposition is given by the difference between the two largest
ranks: (

2n
n

)
−
(

2n
n− 1

)
.

26.2 Narayana numbers via LGV Lemma

Narayana numbers are a two parameter refinement of Catalan numbers, more pre-
cisely: Cn =

∑
kNk(n). We now study these numbers and derive an explicit number for

them.
For the start we again look at the Catalan family (d): rooted full binary trees with

n+ 1 leaves. With such a tree we associate two binary sequences, the fingerprint αand
the bodyprint β. For the fingerprint we look at the leaves of the tree from left to right
and write a 1 for a left leaf and a 0 for a right leaf. This yields the sequence α of length
n+ 1 which starts with a 1 and ends with a 0. For the bodyprint we consider the inner
nodes of the tree in in-order and write a 0 if the node is a left child and a 1 if it is a
right child, for the root we write a 1. This yields the sequence β of length n which
ends with a 1. Figure 26.5 shows a tree with fingerprint and bodyprint.

1 0 1 1 0 1 1 0 0 1 1 00 0 1 1 1 0 1 0 1 1 1

Figure 26.5: Fingerprint α in green and bodyprint β in red

The sequence α always starts with 1 and ends with 0. The sequence β always ends
with 1. We call these entries the trivial bits and define α̂ and β̂ as α and β by removing
the trivial bits from α and β, respectively.

Lemma 26.3. Let T be a full binary tree with n+ 1 leaves, k of them being left leaves. Then

n−1∑
i=1

α̂i =
n−1∑
i=1

β̂i = k − 1 and
j∑
i=1

α̂i ≥
j∑
i=1

β̂i ∀j
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Proof. Bijection between 1s of α̂ and 1s of β̂: As seen in Figure 26.5 the sequences α
and β are interleaved in a natural way. Each inner right node (1 in β) has a associated
leftmost leaf (1 in α). This yields a bijection between the 1s in α and β. If (βi ,αj) = (1,1)
is pair of the bijection, then i ≤ j.

Lemma 26.4. Full binary trees with n+ 1 leaves such that k of them are left-leaves, are in
bijection to pairs (α̂, β̂) of 0,1-strings with

n−1∑
i=1

α̂i =
n−1∑
i=1

β̂i = k − 1 and
j∑
i=1

α̂i ≥
j∑
i=1

β̂i ∀j

Proof. We have already seen the map T 7→ (α̂, β̂). We construct the map (α̂, β̂) 7→ T by
induction on the number of inversions of α̂:

• if α̂ has no inversion, then it is easy to find the unique associated tree, see
Figure 26.6.

0n−k1k−1 7→
n− k k − 1

Figure 26.6: mapping for inversion free α̂

• if there is an inversion, then there is an adjacent inversion: (α̂i−1, α̂i) = (1,0). The
two leaves contributing these values to the fingerprint are children of a common
internal node t which contributes the value β̂i to the bodyprint. Removing the

two leaves makes node t a leaf. This leaf contributes the complement β̂i of β̂i
to the fingerprint of the reduced tree. With this idea in mind we can give a
formal inductive proof. Let (α̂, β̂) be a pair of 0,1 strings with the properties
stated in the lemma and let (α̂i−1, α̂i) = (1,0) be an inversion of α̂. Let α̂′ =

(α̂1, . . . , α̂i−2, β̂i , α̂i+1, . . . , α̂n−1) and β̂′ = (β̂1, . . . , β̂i−1, β̂i+1, . . . , β̂n−1). It is easy to see
that (α̂′, β̂′) obey the conditions for n and either k or k − 1. By induction there
is a corresponding tree T ′. Let t be ith leaf of T ′, this is the leaf contributing

the value β̂i to the fingerprint. Add two leaves to t to obtain T and note that the
reduced fingerprint and bodyprint of T are α̂ and β̂ respectively.

From a pair (α̂, β̂) obeying the conditions of the lemma we build binary strings α+ =
1α̂0 and β+ = 0β̂1. Note that

∑n+1
i=1 α

+
i =

∑n+1
i=1 β

+
i = k for some k and

∑j
i=1α

+
i >

∑j
i=1β

+
i

for all j < n+ 1. We can interpret these binary strings as paths starting in (0,0) and
taking a unit horizontal step to the right for a 0 and a unit vertical step up for a 1. The
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26.2 Narayana numbers via LGV Lemma

conditions imply that the α+-path and the β+-path end at the same point (n− k + 1.k)
and that α+ is strictly above β+ except at the endpoints, see Figure 26.7. The bijection
between full binary trees and pairs (α+,β+) of paths is the bijection (d)↔ (`) between
Catalan families.

β̂

α̂

Figure 26.7: The α+-path and the β+-path obtained from α̂, β̂.

The Catalan family (`) of internally disjoint path of length n+ 1 is naturally parti-
tioned into classes Nk(n) for k = 1, . . . ,n. The class Nk consists of the pairs of paths
ending in (n− k + 1, k). The cardinality Nk(n) = |Nk(n)| is a Narayana number. A pair of
paths inNk(n) can be seen as a pair of disjoint paths from the starting points (0,1) and
(1,0) to the endpoints (n− k,k) and (n− k + 1, k − 1). The Narayana number Nk(n) can
be computed with an easy application of the LGV-Lemma (Lemma 19.6).

Nk(n) = det

(n−1
k−1

) (n−1
k−2

)(n−1
k

) (n−1
k−1

) =
1
n

(
n

k

)(
n

k − 1

)
.

This yields a new formula for the Catalan number

Cn =
n∑
k=1

Nk(n) =
n∑
k=1

1
n

(
n

k

)(
n

k − 1

)
and allows to define a q-analogue of Cn by

Cn(q) =
n∑
k=1

Nk(n)qk .

Dyck path areas, and another q-analog. As in Section 26.1.2 we interpret a Dyck
path as a path with horizontal and vertical unit steps from (0,0) to (n,n). The region
below a Dyck path D is the region between the path and the diagonal x = y. We
can define an order relation: D1 ≤ D2 if the region below D2 is contained in the
region below D1. A cover relation D ≺ D ′ in this poset corresponds to a flip where
a pair 01 (valley) of D is replaced by a 10 (peak) in D ′. In particular the poset is
ranked and the set of Dyck path at rank k is exactly the set of Dyck path where
the area of the region below the path is k + n

2 , here k takes the values 0 to
(n

2
)
. If

Fk(n) = #(Dyck path with area n
2 + k). Then

(n2)∑
k=0

Fk(n) = Cn.
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This refined expression for Cn allows to define a second q-analogue

C̃n(q) =
(n2)∑
k=0

Fk(n)qk .

The recursion formula of the Catalan numbers nicely generalizes for C̃n(q):

C̃n(q) =
n∑
k=1

C̃k−1(q)C̃n−k(q)qn−k−1.
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Lecture

27
More Catalan Connections

In this lecture we hint on deeper connections between Catalan families and other
objects which are of interest in Discrete Mathematics and beyond.

27.1 Tamari lattice

• Rotations on binary trees and diagonal flips on triangulations of an n-gon corre-
spond to each other under the bijection (a↔ c) of Catalan families.

• On binary trees we define T < T ′ if T can be obtained by a sequence of left-
rotations from T ′. This is the Tamari lattice.

• The rotation distance between two binary trees with the same number of nodes
is the minimum number of tree rotations needed to reconfigure one tree into
another. Sleator, Tarjan and Thurston (1988) proved that for infinitely many
values of n, the maximum rotation distance is exactly 2n−6. Pournin (2014) gave
a purely combinatorial proof for this bound.

Rotation distance and hyperbolic geometry Sleator et al. use the interpretation of
rotation distance in terms of flips of triangulations of convex polygons. They interpret
the starting and ending triangulation of a flip sequence as the upper and lower convex
hull of a convex polyhedron while the convex polygon itself is a Hamiltonian circuit in
this polyhedron (consisting of all edges obtained by intersecting the polyhedron with
vertical planes. Under this interpretation, a sequence of flips from one triangulation
to the other can be translated into a collection of tetrahedra that triangulate the given
three-dimensional polyhedron. They find a family of polyhedra with the property that
(in three-dimensional hyperbolic geometry) the polyhedra have large volume, but all
tetrahedra inside them have much smaller volume, implying that many tetrahedra are
needed in any triangulation.

• D. Sleator, R.E. Tarjan and W. Thurston, Rotation distance, triangulations, and
hyperbolic geometry, J. Am. Math. Soc., 3 (1988) 647–681.

• L. Pournin, The diameter of associahedra, Adv. Math. 259 (2014) 13–42.
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27.2 The associahedron

The associahedron An is an (n− 2)-dimensional convex polytope in which each vertex
corresponds to a triangulation of an (n+ 1)-gon and the edges correspond to diagonal
flips. Associahedra are also called Stasheff polytopes.

• The associahedron can be obtained as the fiber polytope of an (n+ 1)-gon. In fact
the polytopes Σ(P ) of Theorem 27.1 below are associahedra.

• The associahedron can be obtained as a hypergraphic polytope. You can find out
about this in a lecture of J. Cardinal: https://youtu.be/rScL2rVvka4

The associahedron as a fiber polytope Let T be a triangulation of a point set P in
convex position in the plane. Let ∆ be a triangle of T , by vol(∆) we denote the area of
∆. For a point p ∈ P let

ϕ(p) =
∑
p∈∆∈T

vol(∆).

be the sum of the areas of triangles having p as a vertex. The volume vector of T is the
vector

ϕ(T ) =
(
ϕ(p1),ϕ(p2), . . . ,ϕ(pn)

)
∈ Rn.

The fiber polytope Σ(P ) of is the convex span of the volume vectors of all triangula-
tions P .

Theorem 27.1. Let P = {p1, . . . ,pn} be a set of points in convex position and Σ(P ) be the
fiber polytope.

(1) The dimension of Σ(P ) is n− 3.

(2) The vertices of Σ(P ) are the volume vectors of triangulations of P .

(3) Faces of Σ(P ) correspond to subdivisions of P , in particular the edges of Σ(P )
correspond to diagonal flips.

References There is a book published in 2012 which contains chapters about all
kind of mathematics related to associahedra and Tamari lattices but also recollections
about the life and mathematical work of Dov Tamari:

Associahedra, Tamari lattices and related structures. Tamari memorial
Festschrift Editors F. Müller-Hoissen, J.M. Pallo, and J. Stasheff. Progress
in Mathematics Vol. 299, Birkhäuser (2012).

Here is a selection of chapters from the book which I find particularly interesting:

• Dov Tamari (formerly Bernhard Teitler), Folkert Müller-Hoissen, Hans-Otto Walther.

• Realizing the Associahedron: Mysteries and Questions, Cesar Ceballos, Günter M.
Ziegler.
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• From the Tamari Lattice to Cambrian Lattices and Beyond, Nathan Reading.

• Catalan Lattices on Series Parallel Interval Orders, Filippo Disanto, Luca Ferrari,
Renzo Pinzani, Simone Rinaldi.

27.3 The maule lattice

In the final 15 minutes of the lecture I presented some ideas about the maule lattice
and its connections to the Tamari lattice and other lattices.

This I learned from lectures of Xavier Viennot which are part of his video-book
The Art of Bijective Combinatorics, see www.viennot.org/abjc.html. Two lectures
about the maule lattice can be found as Lec. 14 (https://youtu.be/U1x7aS9jroA)
and Lec. 15 (https://youtu.be/UihstHHmPTw) of Part III.

27.4 Final links and references

The web page of the combinatorics course 2021 is

https://page.math.tu-berlin.de/˜felsner/Lehre/dsI21.html.

From this page some additional material related to the course is accessible. You can
find links to 14 exercise sheets and a link to a page with “detailed content” of the
individual lectures. On this page you find a description of the content of the lecture
in few lines and links to the recordings of the individual lecture on YouTube.
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