Combinatorics (DS I) - Sheet 10

Exercise 10.1.

- (a) Given a symmetric chain C in the Boolean lattice \mathcal{B}_n , is there always a symmetric chain decomposition containing C?
- (b) Show that the number of chains of length n + 1 2k in a symmetric chain decomposition of \mathcal{B}_n is $\binom{n}{k} \binom{n}{k-1}$.
- (c) Use (b) to derive the known explicit formula for the Catalan numbers $C_n = \frac{1}{n+1} {\binom{2n}{n}}$.

Exercise 10.2.

Let \mathcal{B}_n^{\vee} be the truncation of the Boolean lattice where the maximal and minimal element is deleted. Let \mathcal{C} be a symmetric chain decomposition which is canonical (originating from the bracketing process). Let $\overline{\mathcal{C}}$ be its complement, i.e. for a chain $C \in \mathcal{C}$ the set \overline{C} of complements of sets in C is a set in $\overline{\mathcal{C}}$.

- (a) Show that \overline{C} is a symmetric chain decomposition.
- (b) Show that \mathcal{C} and $\overline{\mathcal{C}}$ are orthogonal, i.e. $|C \cap D| \leq 1$ for all $C \in \mathcal{C}$ and $D \in \overline{\mathcal{C}}$.

Exercise 10.3.

Prove or disprove: Let $P = (X, \leq)$ be a poset and C a maximum chain in it. Then the width of $P' = (X \setminus C, \leq)$ is smaller than the width of P. What if C is a maximal chain? Can this be used to prove Dilworth's theorem?

Exercise 10.4.

- (a) What is the number C_n^k of chains of size k in the Boolean lattice \mathcal{B}_n ?
- (b) Prove by bijection, that the number of antichains of size 2 is C_n^3 .
- (c) What is the number of antichains of size 3 in \mathcal{B}_n ?

Exercise 10.5.

Find an infinite counterexample to the Theorem of Hall, i.e., find a bipartite graph $G = (X \cup Y, E)$ with the property that $|N(S)| \ge |S|$ for all $S \subset X$ and there is no matching containing all vertices of X.

Exercise 10.6.

In the lecture it was proven that if poset P has an orhogonal chain decomposition C_1, C_2 with $|C_1| = k$, $|C_2| = \ell$, then two randomly chosen elements $x, y \in P$ (with any probability distribution) fulfill, then the probability of $x \leq y$ is at least

$$\frac{1}{2}\left(\frac{1}{k}+\frac{1}{\ell}\right).$$

- (a) Look through the proof and identify the conditions that need to be met for equality to hold for all pairs $x, y \in P$.
- (b) Find an example where equality holds if k divides $\ell.$

Bonus Exercise

Consider the infinite Boolean lattice, i.e. the set of all subsets of \mathbb{N} with subset relation. Show that the height of this poset is $|\mathbb{R}|$ by construction an uncountable chain.

List of hints

- The complement is obtained by interpreting the brackets differently.
- Valid bracket expressions are counted by the Catalan numbers.
- In a chain of size two, what happens two times?
- There is a vertex connected to all on the other side.
- Q.