12th Practice sheet for the lecture:
 Combinatorics (DS I)

Felsner / Schröder
13th of July 2023

Due date: 18th of July
http://www.math.tu-berlin.de/~felsner/Lehre/dsI23.html
(1) For which of the parameter sets does a design exist? Either show that there is none or present one. (if λ is omitted, it is 1 .)
(a) $S(2,3,127)$
(d) $S(2,7,36)$
(b) $S_{2}(4,7,13)$
(e) $S_{12}(2,16,21)$
(c) $S_{3}(2,10,25)$
(f) $\quad S_{3}(3,5,21)$
[Hint to (f): In the edge set of K_{7}, use the cycle C_{5}, the star and more as blocks.]
(*) We will call a design a circle-design, if \mathcal{P} can be represented as a point set in the plane and \mathcal{B} can be represented as a set of circles in the plane, such that the incidence structure is given by a point lying on a circle. For which values of the parameter t do there exist non-trivial circle designs?
(3) Let q be a prime power. For every $k, n \in \mathbb{N}, k \leq n$, construct the following design:

$$
S_{\lambda}\left(2,\left[\begin{array}{c}
k \\
1
\end{array}\right]_{q .},\left[\begin{array}{c}
n \\
1
\end{array}\right]_{q .}\right) \text { with } \lambda=\left[\begin{array}{c}
n-2 \\
k-2
\end{array}\right]_{q .} .
$$

(4) In the lecture we saw two (isomorphic) STS(15).
(a) Give another construction of an $\operatorname{STS}(15)$ by considering the edge set of K_{6}, together with edge sets forming triangles and perfect matchings.
$\left.{ }^{*}\right)$ Show that it is isomorphic to the one from the lecture.

