12th Practice sheet for the lecture: Combinatorics (DS I) Due date: 18th of July

Felsner/ Schröder 13th of July 2023

http://www.math.tu-berlin.de/~felsner/Lehre/dsI23.html

- (1) For which of the parameter sets does a design exist? Either show that there is none or present one. (if λ is omitted, it is 1.)
 - (a) S(2,3,127) (d) S(2,7,36)
 - (b) $S_2(4,7,13)$ (e) $S_{12}(2,16,21)$
 - (c) $S_3(2, 10, 25)$ (f) $S_3(3, 5, 21)$

[Hint to (f): In the edge set of K_7 , use the cycle C_5 , the star and more as blocks.]

- (*) We will call a design a *circle-design*, if \mathcal{P} can be represented as a point set in the plane and \mathcal{B} can be represented as a set of circles in the plane, such that the incidence structure is given by a point lying on a circle. For which values of the parameter t do there exist non-trivial circle designs?
- (3) Let q be a prime power. For every $k, n \in \mathbb{N}, k \leq n$, construct the following design:

$$S_{\lambda}\left(2, \left[\begin{array}{c}k\\1\end{array}\right]_{q_{\cdot}}, \left[\begin{array}{c}n\\1\end{array}\right]_{q_{\cdot}}\right) \text{ with } \lambda = \left[\begin{array}{c}n-2\\k-2\end{array}\right]_{q_{\cdot}}$$

(4) In the lecture we saw two (isomorphic) STS(15).

- (a) Give another construction of an STS(15) by considering the edge set of K_6 , together with edge sets forming triangles and perfect matchings.
- (*) Show that it is isomorphic to the one from the lecture.