11th Practice sheet for the lecture: Combinatorics (DS I)

Felsner/ Schröder

5th of July 2023

Due dates: 11th of July

http://www.math.tu-berlin.de/~felsner/Lehre/dsI23.html

(1) A design $(\mathcal{P}, \mathcal{B})$ is *resolvable*, if there is a partition of \mathcal{B} into partitions of \mathcal{P} . Let $(\mathcal{P}, \mathcal{B}) = S(2, n+1, n^2+n+1)$ be a projective plane and fix $B \in \mathcal{B}$. Show that

$$\left(\mathcal{P}\setminus B, \left\{C\setminus B\mid C\in\mathcal{B}\setminus \left\{B\right\}\right\}\right)$$

is a resolvable $S(2, n, n^2)$ design.

- (2) Consider red-blue-face-colorings of the platonic solids with rotational symmetries.
 - (a) Determine the number of differently colored dodecahedra.
 - (b) Determine the number of differently colored icosahedra.
 - (c) Determine the number of differently colored soccer balls. Note that a soccer ball is a truncated icosahedron.
- (3) A graph G = (V, E) is isomorphic to a graph H = (V', E'), if a relabeling of the vertices of G yields the graph H, i.e., if there exists a bijection $\Phi : V \to V'$ such that the mapping $\Psi(\{v, w\}) := \{\Phi(v), \Phi(w)\}$ is a bijection from E to E'. Let $g_{n,k}$ be the number of non-isomorphic graphs on n vertices with k edges. Let $S_n^{[2]}$ be the symmetric group on the vertices, which acts on $\binom{[n]}{2}$ by $\pi^{[2]}(\{i, j\}) := \{\pi(i), \pi(j)\}, \ \pi \in S_n$. Prove

$$\sum_{k=0}^{\binom{n}{2}} g_{n,k} x^k = P_{S_n^{[2]}} \left(1 + x, 1 + x^2, \dots 1 + x^{\binom{n}{2}} \right).$$

How can you derive the type of a permutation $\pi^{[2]}$ based on the type of π ?

(4) Let $(\mathcal{P}, \mathcal{B})$ be a $S_{\lambda}(t, k, v)$. Let $I, J \subset \mathcal{P}$ with $|I| = i, |J| = j, I \cap J = \emptyset$. Let the number of blocks in \mathcal{B} that contain I and are disjoint with J be $\lambda_{I,J}$. Prove that

$$\lambda_{i,j} := \lambda_{I,J} = \lambda \frac{\binom{v-i-j}{k-i}}{\binom{v-t}{k-t}}$$

(5) Let there be 27 cubes of volume 1. Count the number of ways to paint the faces of the cubes with 3 colors, such that for any color c, you can stick the cubes together to form a cube of volume 27 whose faces are of color c, up to rotational symmetries of the 27 cubes it consists of and their order.