10th Practice sheet for the lecture:
Combinatorics (DS I)

Felsner/ Schröder
28th of June 2023

Due dates: 3rd/4th of July
http://www.math.tu-berlin.de/~felsner/Lehre/dsI23.html
(1) Euler Phi-function
(a) Prove that for m, n with $\operatorname{gcd}(m, n)=1$ it holds that $\phi(m \cdot n)=\phi(m) \cdot \phi(n)$.
(b) For a prime p and an integer k, determine $\phi\left(p^{k}\right)$.
(2) Consider necklaces with 12 beads of at most three different colors
(a) How many different necklaces exist?
(b) How many different necklaces with 3 red, 4 green, and 5 blue beads exist?
(3) Popular matchings

Let G be a bipartite graph and each vertex v has a strict preference list L_{v} on its neighbors. We compare the two matchings by comparing votes of the vertices. Let M and M^{\prime} be two matchings of G. Each vertex v gives a vote for $\left(M, M^{\prime}\right)$

$$
\text { vote }_{v}\left(M, M^{\prime}\right)= \begin{cases}-1, & v \text { prefers } M^{\prime}(v) \text { over } M(v) \\ 0, & v \text { has no prefered matching, e.g., } M(v)=M^{\prime}(v) \\ 1, & v \text { prefers } M(v) \text { over } M^{\prime}(v)\end{cases}
$$

We say M is more popular than M^{\prime} if \sum_{v} vote $_{v}\left(M, M^{\prime}\right)>0$ and write $M^{\prime} \prec M$. We say M is popular if no matching M^{\prime} exists that is more popular than M.
(a) Show that there are graphs with preference lists without a popular matching in general graphs/ in the one-sided model, where only one side of the bipartition has a preference list.
(b) Show that every stable matching is popular.
(c) Show that popular matchings may be strictly larger than stable matchings.
(*) Finding max-size popular matchings can be done by a modified Gale-Shapely. Inform yourself about the algorithm. (A rough idea of the proof is fine.)
(*) Consider an $n \times n$ chess-board for even $n \in \mathbb{N}$. How many configurations (up to the symmetries of D_{4}) of n rooks (Türme) on the board are there, such that no rook can capture another one? (Hint: Use the CFB Lemma) How many distinct configurations exist, if you are only considering the symmetries of D_{4}, which map black squares to black squares?

