## 8. Practice sheet for the lecture: Combinatorics (DS I)

Felsner/ Schröder

01. June 2021

Due dates: 08./10. June

http://www.math.tu-berlin.de/~felsner/Lehre/dsI21.html

- (1) Symmetric chain decompositions of  $\mathcal{B}_n$ 
  - (a) Given a symmetric chain C in  $\mathcal{B}_n$ , is there always a symmetric chain decomposition containing C?
  - (b) Show that the number of chains of length n+1-2k in a symmetric chain decomposition of  $\mathcal{B}_n$  is  $\binom{n}{k} \binom{n}{k-1}$ .
  - (c) Use (1b) to derive the known explicit formula for the Catalan numbers, i.e.  $C_n = \frac{1}{n+1} \binom{2n}{n}$ . (Hint: Valid bracket expressions are counted by Catalan numbers.)
- (2) Let  $\mathcal{B}_n^{\vee}$  be the truncation of the Boolean lattice where the maximal and minimal element is deleted. Let  $\mathcal{C}$  be a symmetric chain decomposition which is canonical (originating from the bracketing process). Let  $\overline{\mathcal{C}}$  be its complement, i.e. for a chain  $C \in \mathcal{C}$  the set  $\overline{C}$  of complements of sets in C is a set in  $\overline{\mathcal{C}}$ .
  - (a) Show that  $\overline{\mathcal{C}}$  is a symmetric chain decomposition.
  - (b) Show that  $\mathcal{C}$  and  $\overline{\mathcal{C}}$  are orthogonal, i.e.  $|C \cap D| \leq 1$  for all  $C \in \mathcal{C}$  and  $D \in \overline{\mathcal{C}}$ .
- (3) Let  $\mathcal{A}$  be a family of k-subsets of [n] and  $\mathcal{B}$  be a family of l-subsets of [n] such that  $l + k \le n$  and  $A \cap B \ne \emptyset$  for all  $A \in \mathcal{A}$  and  $B \in \mathcal{B}$ .
  - (a) Show that  $|\mathcal{A}| < \binom{n-1}{k-1}$  or  $|\mathcal{B}| \le \binom{n-1}{l-1}$ . Hint: Use shadows as in the second proof of the Erdős-Ko-Rado theorem.
  - (b) Deduce the Erdős-Ko-Rado theorem from (a).
- (4) Prove or disprove: Let  $P = (X, \leq)$  be a poset and C a maximum chain. Then the width of  $P' := (X \setminus C, \leq)$  is smaller than the width of P. What if C is a maximal chain? Can this be used to prove Dilworth's theorem?
- (5) Counting chains and antichains in  $\mathcal{B}_n$ 
  - (a) What is the number  $C_n^{(k)}$  of chains of size k in the boolean lattice?
  - (b) Prove by bijection that the number of antichains of size 2 is  $\frac{1}{2}C_n^{(3)}$ .
  - (c) What is the number of antichains of size 3 in the boolean lattice?