5. Practice sheet for the lecture:

Combinatorics (DS I)

Felsner/ Schröder
23. May 2023

Due dates: 29.-30. May
http://www.math.tu-berlin.de/~felsner/Lehre/dsI23.html
(1) We say a vertex in a binary tree is an inner vertex if it has at least one child. Let t_{n} denote the number of binary trees with n inner vertices. Use the symbolic method to determine the generating function $T(z)$.
(2) A set of chords of a convex $2 n$-gon is a quadrangulation if no two chords intersect and all faces are quadrangles. Let a_{n} denote the number of quadrangulations of a convex $2 n$-gon. Use the symbolic method to find the generating function $A(x)=\sum_{n \geq 0} a_{n} x^{n}$. [Hint: Find a connection to ternary trees.]

Figure 1: The 3 quadrangulations of a 6 -gon
(3) On a table there are 100 coins. A and B are going to remove coins from the table by turns. In each turn they can remove 2,5 or 6 coins. The first one that cannot make a move loses. Determine who has a winning strategy if A plays first.
(4) Prove the following facts about the Fibonacci numbers F_{n}.
(a) Every $n \in \mathbb{N}$ can be partitioned uniquely into different Fibonacci numbers $F_{k}, k>1$, such that no two consecutive Fibonacci numbers are used.
(b) $\quad F_{2 n}=\sum_{k=0}^{n}\binom{n}{k} F_{k}$ [Hint: There is a nice bijection using monominoes.]
(5) A permutation $\pi \in S_{n}$ is alternating if $\pi_{1}<\pi_{2}>\pi_{3}<\pi_{4}>\ldots$ holds. Let Alt $_{n} \subseteq S_{n}$ be the set of alternating permutations. A permutation σ is reverse alternating if $\sigma_{1}>\sigma_{2}<\sigma_{3}>\sigma_{4}<\ldots$ holds. Let $\mathrm{RAlt}_{n} \subseteq S_{n}$ be the set of reverse alternating permutations.
(a) Prove \mid Alt $_{n}\left|=\left|\operatorname{RAlt}_{n}\right|\right.$.
(b) Let $E_{n}:=\left|\mathrm{Alt}_{n}\right|$ and prove $2 E_{n+1}=\sum_{k=0}^{n}\binom{n}{k} E_{k} E_{n-k}$ for all $n \geq 1$. [Hint: Apply (a)]
(c) Let $E_{n}(q):=\sum_{\pi \in \operatorname{RAlt}_{n}} q^{\operatorname{inv}(\pi)}$ and $E_{n}^{\star}(q):=\sum_{\pi \in \operatorname{Alt}_{n}} q^{\operatorname{inv}(\pi)}$. Prove

$$
E_{n}^{\star}(q)=q^{\binom{n}{2}} E_{n}\left(\frac{1}{q}\right) .
$$

