3. Practice sheet for the lecture:

Combinatorics (DS I)

Felsner/ Schröder
4. Mai 2023

Due dates: 15. /16. May
http://www.math.tu-berlin.de/~felsner/Lehre/dsI23.html
(1)
(a) How many subsets of the set [n] contain at least one odd integer?
(b) How many multi-subsets of the set $[n]$ have size k ? (Multi(-sub-)sets may contain the same element more than once.)
(c) Let \subseteq denote the (non-strict) subset relation. For a given $k \in[n]$, how many sequences $\left(T_{1}, T_{2}, \ldots, T_{k}\right)$ are there with

$$
\emptyset \subseteq T_{1} \subseteq T_{2} \subseteq \ldots \subseteq T_{k} \subseteq[n] ?
$$

(2) Show that the number of partitions of n where no part is divisible by $d \in \mathbb{N} \backslash\{0,1\}$ equals the number of partitions of n where no d parts have the same size.
(3) Let there be n points in the plane with integer coordinates. Among them, we want to find three points p_{1}, p_{2}, p_{3}, such that their barycenter $b=\frac{1}{3}\left(p_{1}+p_{2}+p_{3}\right)$ has integer coordinates.
(a) Prove that if $n \geq 13$, we can always find such 3 points.
(b) Prove that if $n=9$, we can always find such 3 points.
(c) Find a set of $n=8$ points, where it is impossible to choose 3 such points.
(4) $c(n, k)$ denotes the number of permutations of $[n]$ with k cycles and $S(n, m)$ the number of partitions of $[n]$ into m parts. Show the following identities:

$$
\begin{gathered}
c(n+1, m+1)=\sum_{k=m}^{n}\binom{k}{m} c(n, k) \\
S(n+1, k+1)=\sum_{i}\binom{n}{i} S(i, k) \\
\sum_{k=0}^{n} c(n, n-k) x^{k}=\prod_{k=0}^{n-1}(1+k x) \\
\sum_{k=0}^{\infty} S(n+k, n) x^{k}=\prod_{k=1}^{n} \frac{1}{1-k x}
\end{gathered}
$$

(5) In the parliament of some country there are $2 n+1$ seats filled by 3 parties. How many possible distributions (i, j, k), (i.e. party 1 has i, party 2 has j, and party 3 has k seats) are there, such that no party has an absolute majority? Give a nice combinatorial proof. (Hint: Look at small numbers and make a good guess.)

