12th Practice sheet for the lecture: Combinatorics (DS I)

Felsner/ Schröder 30th of June 2019

Due dates: 6th/8th of July http://www.math.tu-berlin.de/~felsner/Lehre/dsI21.html

- (1) (This exercise gives 2 points.) For which of the parameter sets does a design exist? Either show that there is none or present one. (if λ is omitted, it is 1.)
 - (a) S(2,3,127) (d) S(2,7,36)
 - (b) $S_2(4,7,13)$ (e) $S_{12}(2,16,21)$
 - (c) $S_3(2, 10, 25)$ (f) $S_3(3, 5, 21)$

[Hint to (f): In the edge set of K_7 , use the cycle C_5 , the star and more as blocks.]

- (2) Let $(\mathcal{P}, \mathcal{B})$ be a $S_{\lambda}(t, k, v)$ design.
 - (a) Let $p \in \mathcal{P}$ and $\mathcal{B}^p := \{B : p \notin B \in \mathcal{B}\}$ be the set of blocks, which do not contain p. Show that $(\mathcal{P} \setminus \{p\}, \mathcal{B}^p)$ is a design. What are its parameters?
 - (b) Consider the *complement* of a $S_{\lambda}(t, k, v)$, i.e., replace each block by its complement. Prove that the complement of a $S_{\lambda}(t, k, v)$ is a design for the same parameter t. Determine its other parameters.
- (3) A design $(\mathcal{P}, \mathcal{B})$ is *resolvable*, if there is a partition of \mathcal{B} into partitions of \mathcal{P} . Let $(\mathcal{P}, \mathcal{B}) = S(2, n+1, n^2 + n + 1)$ be a projective plane and fix $B \in \mathcal{B}$. Show that

$$\left(\mathcal{P} \setminus B, \left\{C \setminus B \mid C \in \mathcal{B} \setminus \{B\}\right\}\right)$$

is a resolvable $S(2, n, n^2)$ design.

- (*) We will call a design a *circle-design*, if \mathcal{P} can be represented as a point set in the plane and \mathcal{B} can be represented as a set of circles in the plane, such that the incidence structure is given by a point lying on a circle. For which values of the parameter t do there exist non-trivial circle designs?
- (5) A perfect matching of K_{2n} is a set of n disjoint edges. A resolution of K_{2n} is a partition of its edge set into perfect matchings.
 - (a) Show that two disjoint perfect matchings of K_6 determine a unique resolution. [Hint: Note that the union of two perfect matchings of K_6 is a cycle.]
 - (b) Consider $K_6 = (V, E)$. Let \mathcal{P} denote the set of its perfect matchings and \mathcal{R} the set of its resolutions. For $e \in E$ we define $B_e := \{v \in V | v \in e\} \cup \{P \in \mathcal{P} | e \in P\}$ and for each $R \in \mathcal{R}$, we define $B_R := \{P \in \mathcal{P} | P \in R\}$. Conclude that the following is a S(2, 5, 21):

$$(\mathcal{P} \cup V, \{B_e | e \in E\} \cup \{B_R | R \in \mathcal{R}\})$$

(*) Show that the design from (b) is a projective plane.